Step |
Hyp |
Ref |
Expression |
1 |
|
lnophmlem.1 |
|- A e. ~H |
2 |
|
lnophmlem.2 |
|- B e. ~H |
3 |
|
lnophmlem.3 |
|- T e. LinOp |
4 |
|
lnophmlem.4 |
|- A. x e. ~H ( x .ih ( T ` x ) ) e. RR |
5 |
|
id |
|- ( x = A -> x = A ) |
6 |
|
fveq2 |
|- ( x = A -> ( T ` x ) = ( T ` A ) ) |
7 |
5 6
|
oveq12d |
|- ( x = A -> ( x .ih ( T ` x ) ) = ( A .ih ( T ` A ) ) ) |
8 |
7
|
eleq1d |
|- ( x = A -> ( ( x .ih ( T ` x ) ) e. RR <-> ( A .ih ( T ` A ) ) e. RR ) ) |
9 |
8
|
rspcv |
|- ( A e. ~H -> ( A. x e. ~H ( x .ih ( T ` x ) ) e. RR -> ( A .ih ( T ` A ) ) e. RR ) ) |
10 |
1 4 9
|
mp2 |
|- ( A .ih ( T ` A ) ) e. RR |