Step |
Hyp |
Ref |
Expression |
1 |
|
lnophmlem.1 |
|- A e. ~H |
2 |
|
lnophmlem.2 |
|- B e. ~H |
3 |
|
lnophmlem.3 |
|- T e. LinOp |
4 |
|
lnophmlem.4 |
|- A. x e. ~H ( x .ih ( T ` x ) ) e. RR |
5 |
3
|
lnopfi |
|- T : ~H --> ~H |
6 |
5
|
ffvelrni |
|- ( A e. ~H -> ( T ` A ) e. ~H ) |
7 |
1 6
|
ax-mp |
|- ( T ` A ) e. ~H |
8 |
5
|
ffvelrni |
|- ( B e. ~H -> ( T ` B ) e. ~H ) |
9 |
2 8
|
ax-mp |
|- ( T ` B ) e. ~H |
10 |
2 7 1 9
|
polid2i |
|- ( B .ih ( T ` A ) ) = ( ( ( ( ( B +h A ) .ih ( ( T ` B ) +h ( T ` A ) ) ) - ( ( B -h A ) .ih ( ( T ` B ) -h ( T ` A ) ) ) ) + ( _i x. ( ( ( B +h ( _i .h A ) ) .ih ( ( T ` B ) +h ( _i .h ( T ` A ) ) ) ) - ( ( B -h ( _i .h A ) ) .ih ( ( T ` B ) -h ( _i .h ( T ` A ) ) ) ) ) ) ) / 4 ) |
11 |
2 1
|
hvcomi |
|- ( B +h A ) = ( A +h B ) |
12 |
9 7
|
hvcomi |
|- ( ( T ` B ) +h ( T ` A ) ) = ( ( T ` A ) +h ( T ` B ) ) |
13 |
3
|
lnopaddi |
|- ( ( A e. ~H /\ B e. ~H ) -> ( T ` ( A +h B ) ) = ( ( T ` A ) +h ( T ` B ) ) ) |
14 |
1 2 13
|
mp2an |
|- ( T ` ( A +h B ) ) = ( ( T ` A ) +h ( T ` B ) ) |
15 |
12 14
|
eqtr4i |
|- ( ( T ` B ) +h ( T ` A ) ) = ( T ` ( A +h B ) ) |
16 |
11 15
|
oveq12i |
|- ( ( B +h A ) .ih ( ( T ` B ) +h ( T ` A ) ) ) = ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) |
17 |
2 1 9 7
|
hisubcomi |
|- ( ( B -h A ) .ih ( ( T ` B ) -h ( T ` A ) ) ) = ( ( A -h B ) .ih ( ( T ` A ) -h ( T ` B ) ) ) |
18 |
3
|
lnopsubi |
|- ( ( A e. ~H /\ B e. ~H ) -> ( T ` ( A -h B ) ) = ( ( T ` A ) -h ( T ` B ) ) ) |
19 |
1 2 18
|
mp2an |
|- ( T ` ( A -h B ) ) = ( ( T ` A ) -h ( T ` B ) ) |
20 |
19
|
oveq2i |
|- ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) = ( ( A -h B ) .ih ( ( T ` A ) -h ( T ` B ) ) ) |
21 |
17 20
|
eqtr4i |
|- ( ( B -h A ) .ih ( ( T ` B ) -h ( T ` A ) ) ) = ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) |
22 |
16 21
|
oveq12i |
|- ( ( ( B +h A ) .ih ( ( T ` B ) +h ( T ` A ) ) ) - ( ( B -h A ) .ih ( ( T ` B ) -h ( T ` A ) ) ) ) = ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) |
23 |
|
ax-icn |
|- _i e. CC |
24 |
23 2
|
hvmulcli |
|- ( _i .h B ) e. ~H |
25 |
1 24
|
hvsubcli |
|- ( A -h ( _i .h B ) ) e. ~H |
26 |
5
|
ffvelrni |
|- ( ( A -h ( _i .h B ) ) e. ~H -> ( T ` ( A -h ( _i .h B ) ) ) e. ~H ) |
27 |
25 26
|
ax-mp |
|- ( T ` ( A -h ( _i .h B ) ) ) e. ~H |
28 |
23 23 25 27
|
his35i |
|- ( ( _i .h ( A -h ( _i .h B ) ) ) .ih ( _i .h ( T ` ( A -h ( _i .h B ) ) ) ) ) = ( ( _i x. ( * ` _i ) ) x. ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) ) |
29 |
23 1 24
|
hvsubdistr1i |
|- ( _i .h ( A -h ( _i .h B ) ) ) = ( ( _i .h A ) -h ( _i .h ( _i .h B ) ) ) |
30 |
23 1
|
hvmulcli |
|- ( _i .h A ) e. ~H |
31 |
23 24
|
hvmulcli |
|- ( _i .h ( _i .h B ) ) e. ~H |
32 |
30 31
|
hvsubvali |
|- ( ( _i .h A ) -h ( _i .h ( _i .h B ) ) ) = ( ( _i .h A ) +h ( -u 1 .h ( _i .h ( _i .h B ) ) ) ) |
33 |
23 23 2
|
hvmulassi |
|- ( ( _i x. _i ) .h B ) = ( _i .h ( _i .h B ) ) |
34 |
33
|
oveq2i |
|- ( -u 1 .h ( ( _i x. _i ) .h B ) ) = ( -u 1 .h ( _i .h ( _i .h B ) ) ) |
35 |
|
ixi |
|- ( _i x. _i ) = -u 1 |
36 |
35
|
oveq2i |
|- ( -u 1 x. ( _i x. _i ) ) = ( -u 1 x. -u 1 ) |
37 |
|
ax-1cn |
|- 1 e. CC |
38 |
37 37
|
mul2negi |
|- ( -u 1 x. -u 1 ) = ( 1 x. 1 ) |
39 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
40 |
36 38 39
|
3eqtri |
|- ( -u 1 x. ( _i x. _i ) ) = 1 |
41 |
40
|
oveq1i |
|- ( ( -u 1 x. ( _i x. _i ) ) .h B ) = ( 1 .h B ) |
42 |
|
neg1cn |
|- -u 1 e. CC |
43 |
23 23
|
mulcli |
|- ( _i x. _i ) e. CC |
44 |
42 43 2
|
hvmulassi |
|- ( ( -u 1 x. ( _i x. _i ) ) .h B ) = ( -u 1 .h ( ( _i x. _i ) .h B ) ) |
45 |
|
ax-hvmulid |
|- ( B e. ~H -> ( 1 .h B ) = B ) |
46 |
2 45
|
ax-mp |
|- ( 1 .h B ) = B |
47 |
41 44 46
|
3eqtr3i |
|- ( -u 1 .h ( ( _i x. _i ) .h B ) ) = B |
48 |
34 47
|
eqtr3i |
|- ( -u 1 .h ( _i .h ( _i .h B ) ) ) = B |
49 |
48
|
oveq2i |
|- ( ( _i .h A ) +h ( -u 1 .h ( _i .h ( _i .h B ) ) ) ) = ( ( _i .h A ) +h B ) |
50 |
32 49
|
eqtri |
|- ( ( _i .h A ) -h ( _i .h ( _i .h B ) ) ) = ( ( _i .h A ) +h B ) |
51 |
30 2
|
hvcomi |
|- ( ( _i .h A ) +h B ) = ( B +h ( _i .h A ) ) |
52 |
29 50 51
|
3eqtri |
|- ( _i .h ( A -h ( _i .h B ) ) ) = ( B +h ( _i .h A ) ) |
53 |
52
|
fveq2i |
|- ( T ` ( _i .h ( A -h ( _i .h B ) ) ) ) = ( T ` ( B +h ( _i .h A ) ) ) |
54 |
3
|
lnopmuli |
|- ( ( _i e. CC /\ ( A -h ( _i .h B ) ) e. ~H ) -> ( T ` ( _i .h ( A -h ( _i .h B ) ) ) ) = ( _i .h ( T ` ( A -h ( _i .h B ) ) ) ) ) |
55 |
23 25 54
|
mp2an |
|- ( T ` ( _i .h ( A -h ( _i .h B ) ) ) ) = ( _i .h ( T ` ( A -h ( _i .h B ) ) ) ) |
56 |
3
|
lnopaddmuli |
|- ( ( _i e. CC /\ B e. ~H /\ A e. ~H ) -> ( T ` ( B +h ( _i .h A ) ) ) = ( ( T ` B ) +h ( _i .h ( T ` A ) ) ) ) |
57 |
23 2 1 56
|
mp3an |
|- ( T ` ( B +h ( _i .h A ) ) ) = ( ( T ` B ) +h ( _i .h ( T ` A ) ) ) |
58 |
53 55 57
|
3eqtr3i |
|- ( _i .h ( T ` ( A -h ( _i .h B ) ) ) ) = ( ( T ` B ) +h ( _i .h ( T ` A ) ) ) |
59 |
52 58
|
oveq12i |
|- ( ( _i .h ( A -h ( _i .h B ) ) ) .ih ( _i .h ( T ` ( A -h ( _i .h B ) ) ) ) ) = ( ( B +h ( _i .h A ) ) .ih ( ( T ` B ) +h ( _i .h ( T ` A ) ) ) ) |
60 |
|
cji |
|- ( * ` _i ) = -u _i |
61 |
60
|
oveq2i |
|- ( _i x. ( * ` _i ) ) = ( _i x. -u _i ) |
62 |
23 23
|
mulneg2i |
|- ( _i x. -u _i ) = -u ( _i x. _i ) |
63 |
35
|
negeqi |
|- -u ( _i x. _i ) = -u -u 1 |
64 |
|
negneg1e1 |
|- -u -u 1 = 1 |
65 |
63 64
|
eqtri |
|- -u ( _i x. _i ) = 1 |
66 |
61 62 65
|
3eqtri |
|- ( _i x. ( * ` _i ) ) = 1 |
67 |
66
|
oveq1i |
|- ( ( _i x. ( * ` _i ) ) x. ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) ) = ( 1 x. ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) ) |
68 |
25 1 3 4
|
lnophmlem1 |
|- ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) e. RR |
69 |
68
|
recni |
|- ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) e. CC |
70 |
69
|
mulid2i |
|- ( 1 x. ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) ) = ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) |
71 |
67 70
|
eqtri |
|- ( ( _i x. ( * ` _i ) ) x. ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) ) = ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) |
72 |
28 59 71
|
3eqtr3i |
|- ( ( B +h ( _i .h A ) ) .ih ( ( T ` B ) +h ( _i .h ( T ` A ) ) ) ) = ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) |
73 |
23 7
|
hvmulcli |
|- ( _i .h ( T ` A ) ) e. ~H |
74 |
2 30 9 73
|
hisubcomi |
|- ( ( B -h ( _i .h A ) ) .ih ( ( T ` B ) -h ( _i .h ( T ` A ) ) ) ) = ( ( ( _i .h A ) -h B ) .ih ( ( _i .h ( T ` A ) ) -h ( T ` B ) ) ) |
75 |
35
|
oveq1i |
|- ( ( _i x. _i ) .h B ) = ( -u 1 .h B ) |
76 |
33 75
|
eqtr3i |
|- ( _i .h ( _i .h B ) ) = ( -u 1 .h B ) |
77 |
76
|
oveq2i |
|- ( ( _i .h A ) +h ( _i .h ( _i .h B ) ) ) = ( ( _i .h A ) +h ( -u 1 .h B ) ) |
78 |
23 1 24
|
hvdistr1i |
|- ( _i .h ( A +h ( _i .h B ) ) ) = ( ( _i .h A ) +h ( _i .h ( _i .h B ) ) ) |
79 |
30 2
|
hvsubvali |
|- ( ( _i .h A ) -h B ) = ( ( _i .h A ) +h ( -u 1 .h B ) ) |
80 |
77 78 79
|
3eqtr4i |
|- ( _i .h ( A +h ( _i .h B ) ) ) = ( ( _i .h A ) -h B ) |
81 |
80
|
fveq2i |
|- ( T ` ( _i .h ( A +h ( _i .h B ) ) ) ) = ( T ` ( ( _i .h A ) -h B ) ) |
82 |
1 24
|
hvaddcli |
|- ( A +h ( _i .h B ) ) e. ~H |
83 |
3
|
lnopmuli |
|- ( ( _i e. CC /\ ( A +h ( _i .h B ) ) e. ~H ) -> ( T ` ( _i .h ( A +h ( _i .h B ) ) ) ) = ( _i .h ( T ` ( A +h ( _i .h B ) ) ) ) ) |
84 |
23 82 83
|
mp2an |
|- ( T ` ( _i .h ( A +h ( _i .h B ) ) ) ) = ( _i .h ( T ` ( A +h ( _i .h B ) ) ) ) |
85 |
3
|
lnopmulsubi |
|- ( ( _i e. CC /\ A e. ~H /\ B e. ~H ) -> ( T ` ( ( _i .h A ) -h B ) ) = ( ( _i .h ( T ` A ) ) -h ( T ` B ) ) ) |
86 |
23 1 2 85
|
mp3an |
|- ( T ` ( ( _i .h A ) -h B ) ) = ( ( _i .h ( T ` A ) ) -h ( T ` B ) ) |
87 |
81 84 86
|
3eqtr3i |
|- ( _i .h ( T ` ( A +h ( _i .h B ) ) ) ) = ( ( _i .h ( T ` A ) ) -h ( T ` B ) ) |
88 |
80 87
|
oveq12i |
|- ( ( _i .h ( A +h ( _i .h B ) ) ) .ih ( _i .h ( T ` ( A +h ( _i .h B ) ) ) ) ) = ( ( ( _i .h A ) -h B ) .ih ( ( _i .h ( T ` A ) ) -h ( T ` B ) ) ) |
89 |
74 88
|
eqtr4i |
|- ( ( B -h ( _i .h A ) ) .ih ( ( T ` B ) -h ( _i .h ( T ` A ) ) ) ) = ( ( _i .h ( A +h ( _i .h B ) ) ) .ih ( _i .h ( T ` ( A +h ( _i .h B ) ) ) ) ) |
90 |
5
|
ffvelrni |
|- ( ( A +h ( _i .h B ) ) e. ~H -> ( T ` ( A +h ( _i .h B ) ) ) e. ~H ) |
91 |
82 90
|
ax-mp |
|- ( T ` ( A +h ( _i .h B ) ) ) e. ~H |
92 |
23 23 82 91
|
his35i |
|- ( ( _i .h ( A +h ( _i .h B ) ) ) .ih ( _i .h ( T ` ( A +h ( _i .h B ) ) ) ) ) = ( ( _i x. ( * ` _i ) ) x. ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) |
93 |
66
|
oveq1i |
|- ( ( _i x. ( * ` _i ) ) x. ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) = ( 1 x. ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) |
94 |
82 1 3 4
|
lnophmlem1 |
|- ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) e. RR |
95 |
94
|
recni |
|- ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) e. CC |
96 |
95
|
mulid2i |
|- ( 1 x. ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) = ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) |
97 |
93 96
|
eqtri |
|- ( ( _i x. ( * ` _i ) ) x. ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) = ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) |
98 |
89 92 97
|
3eqtri |
|- ( ( B -h ( _i .h A ) ) .ih ( ( T ` B ) -h ( _i .h ( T ` A ) ) ) ) = ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) |
99 |
72 98
|
oveq12i |
|- ( ( ( B +h ( _i .h A ) ) .ih ( ( T ` B ) +h ( _i .h ( T ` A ) ) ) ) - ( ( B -h ( _i .h A ) ) .ih ( ( T ` B ) -h ( _i .h ( T ` A ) ) ) ) ) = ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) |
100 |
99
|
oveq2i |
|- ( _i x. ( ( ( B +h ( _i .h A ) ) .ih ( ( T ` B ) +h ( _i .h ( T ` A ) ) ) ) - ( ( B -h ( _i .h A ) ) .ih ( ( T ` B ) -h ( _i .h ( T ` A ) ) ) ) ) ) = ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) |
101 |
22 100
|
oveq12i |
|- ( ( ( ( B +h A ) .ih ( ( T ` B ) +h ( T ` A ) ) ) - ( ( B -h A ) .ih ( ( T ` B ) -h ( T ` A ) ) ) ) + ( _i x. ( ( ( B +h ( _i .h A ) ) .ih ( ( T ` B ) +h ( _i .h ( T ` A ) ) ) ) - ( ( B -h ( _i .h A ) ) .ih ( ( T ` B ) -h ( _i .h ( T ` A ) ) ) ) ) ) ) = ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) |
102 |
101
|
oveq1i |
|- ( ( ( ( ( B +h A ) .ih ( ( T ` B ) +h ( T ` A ) ) ) - ( ( B -h A ) .ih ( ( T ` B ) -h ( T ` A ) ) ) ) + ( _i x. ( ( ( B +h ( _i .h A ) ) .ih ( ( T ` B ) +h ( _i .h ( T ` A ) ) ) ) - ( ( B -h ( _i .h A ) ) .ih ( ( T ` B ) -h ( _i .h ( T ` A ) ) ) ) ) ) ) / 4 ) = ( ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) / 4 ) |
103 |
10 102
|
eqtri |
|- ( B .ih ( T ` A ) ) = ( ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) / 4 ) |
104 |
103
|
fveq2i |
|- ( * ` ( B .ih ( T ` A ) ) ) = ( * ` ( ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) / 4 ) ) |
105 |
|
4ne0 |
|- 4 =/= 0 |
106 |
1 2
|
hvaddcli |
|- ( A +h B ) e. ~H |
107 |
106 1 3 4
|
lnophmlem1 |
|- ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) e. RR |
108 |
1 2
|
hvsubcli |
|- ( A -h B ) e. ~H |
109 |
108 1 3 4
|
lnophmlem1 |
|- ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) e. RR |
110 |
107 109
|
resubcli |
|- ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) e. RR |
111 |
110
|
recni |
|- ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) e. CC |
112 |
68 94
|
resubcli |
|- ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) e. RR |
113 |
112
|
recni |
|- ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) e. CC |
114 |
23 113
|
mulcli |
|- ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) e. CC |
115 |
111 114
|
addcli |
|- ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) e. CC |
116 |
|
4re |
|- 4 e. RR |
117 |
116
|
recni |
|- 4 e. CC |
118 |
115 117
|
cjdivi |
|- ( 4 =/= 0 -> ( * ` ( ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) / 4 ) ) = ( ( * ` ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) ) / ( * ` 4 ) ) ) |
119 |
105 118
|
ax-mp |
|- ( * ` ( ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) / 4 ) ) = ( ( * ` ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) ) / ( * ` 4 ) ) |
120 |
|
cjreim |
|- ( ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) e. RR /\ ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) e. RR ) -> ( * ` ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) ) = ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) - ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) ) |
121 |
110 112 120
|
mp2an |
|- ( * ` ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) ) = ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) - ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) |
122 |
82 2 3 4
|
lnophmlem1 |
|- ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) e. RR |
123 |
68 122
|
resubcli |
|- ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) e. RR |
124 |
123
|
recni |
|- ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) e. CC |
125 |
23 124
|
mulcli |
|- ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) e. CC |
126 |
111 125
|
negsubi |
|- ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + -u ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) = ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) - ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) |
127 |
121 126
|
eqtr4i |
|- ( * ` ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) ) = ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + -u ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) |
128 |
23 113
|
mulneg2i |
|- ( _i x. -u ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) = -u ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) |
129 |
69 95
|
negsubdi2i |
|- -u ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) = ( ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) ) |
130 |
129
|
oveq2i |
|- ( _i x. -u ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) = ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) ) ) |
131 |
128 130
|
eqtr3i |
|- -u ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) = ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) ) ) |
132 |
131
|
oveq2i |
|- ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + -u ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) = ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) ) ) ) |
133 |
14
|
oveq2i |
|- ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) = ( ( A +h B ) .ih ( ( T ` A ) +h ( T ` B ) ) ) |
134 |
133 20
|
oveq12i |
|- ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) = ( ( ( A +h B ) .ih ( ( T ` A ) +h ( T ` B ) ) ) - ( ( A -h B ) .ih ( ( T ` A ) -h ( T ` B ) ) ) ) |
135 |
3
|
lnopaddmuli |
|- ( ( _i e. CC /\ A e. ~H /\ B e. ~H ) -> ( T ` ( A +h ( _i .h B ) ) ) = ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) ) |
136 |
23 1 2 135
|
mp3an |
|- ( T ` ( A +h ( _i .h B ) ) ) = ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) |
137 |
136
|
oveq2i |
|- ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) = ( ( A +h ( _i .h B ) ) .ih ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) ) |
138 |
3
|
lnopsubmuli |
|- ( ( _i e. CC /\ A e. ~H /\ B e. ~H ) -> ( T ` ( A -h ( _i .h B ) ) ) = ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) ) |
139 |
23 1 2 138
|
mp3an |
|- ( T ` ( A -h ( _i .h B ) ) ) = ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) |
140 |
139
|
oveq2i |
|- ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) = ( ( A -h ( _i .h B ) ) .ih ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) ) |
141 |
137 140
|
oveq12i |
|- ( ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) ) = ( ( ( A +h ( _i .h B ) ) .ih ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) ) ) |
142 |
141
|
oveq2i |
|- ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) ) ) = ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) ) ) ) |
143 |
134 142
|
oveq12i |
|- ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) ) ) ) = ( ( ( ( A +h B ) .ih ( ( T ` A ) +h ( T ` B ) ) ) - ( ( A -h B ) .ih ( ( T ` A ) -h ( T ` B ) ) ) ) + ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) ) ) ) ) |
144 |
127 132 143
|
3eqtri |
|- ( * ` ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) ) = ( ( ( ( A +h B ) .ih ( ( T ` A ) +h ( T ` B ) ) ) - ( ( A -h B ) .ih ( ( T ` A ) -h ( T ` B ) ) ) ) + ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) ) ) ) ) |
145 |
|
cjre |
|- ( 4 e. RR -> ( * ` 4 ) = 4 ) |
146 |
116 145
|
ax-mp |
|- ( * ` 4 ) = 4 |
147 |
144 146
|
oveq12i |
|- ( ( * ` ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) ) / ( * ` 4 ) ) = ( ( ( ( ( A +h B ) .ih ( ( T ` A ) +h ( T ` B ) ) ) - ( ( A -h B ) .ih ( ( T ` A ) -h ( T ` B ) ) ) ) + ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) ) ) ) ) / 4 ) |
148 |
104 119 147
|
3eqtrri |
|- ( ( ( ( ( A +h B ) .ih ( ( T ` A ) +h ( T ` B ) ) ) - ( ( A -h B ) .ih ( ( T ` A ) -h ( T ` B ) ) ) ) + ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) ) ) ) ) / 4 ) = ( * ` ( B .ih ( T ` A ) ) ) |
149 |
1 9 2 7
|
polid2i |
|- ( A .ih ( T ` B ) ) = ( ( ( ( ( A +h B ) .ih ( ( T ` A ) +h ( T ` B ) ) ) - ( ( A -h B ) .ih ( ( T ` A ) -h ( T ` B ) ) ) ) + ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) ) ) ) ) / 4 ) |
150 |
7 2
|
his1i |
|- ( ( T ` A ) .ih B ) = ( * ` ( B .ih ( T ` A ) ) ) |
151 |
148 149 150
|
3eqtr4i |
|- ( A .ih ( T ` B ) ) = ( ( T ` A ) .ih B ) |