Description: Basic scalar product property of a linear Hilbert space operator. (Contributed by NM, 23-Jan-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lnopl.1 | |- T e. LinOp |
|
Assertion | lnopli | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( T ` ( ( A .h B ) +h C ) ) = ( ( A .h ( T ` B ) ) +h ( T ` C ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnopl.1 | |- T e. LinOp |
|
2 | lnopl | |- ( ( ( T e. LinOp /\ A e. CC ) /\ ( B e. ~H /\ C e. ~H ) ) -> ( T ` ( ( A .h B ) +h C ) ) = ( ( A .h ( T ` B ) ) +h ( T ` C ) ) ) |
|
3 | 1 2 | mpanl1 | |- ( ( A e. CC /\ ( B e. ~H /\ C e. ~H ) ) -> ( T ` ( ( A .h B ) +h C ) ) = ( ( A .h ( T ` B ) ) +h ( T ` C ) ) ) |
4 | 3 | 3impb | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( T ` ( ( A .h B ) +h C ) ) = ( ( A .h ( T ` B ) ) +h ( T ` C ) ) ) |