Metamath Proof Explorer


Theorem lnopli

Description: Basic scalar product property of a linear Hilbert space operator. (Contributed by NM, 23-Jan-2006) (New usage is discouraged.)

Ref Expression
Hypothesis lnopl.1
|- T e. LinOp
Assertion lnopli
|- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( T ` ( ( A .h B ) +h C ) ) = ( ( A .h ( T ` B ) ) +h ( T ` C ) ) )

Proof

Step Hyp Ref Expression
1 lnopl.1
 |-  T e. LinOp
2 lnopl
 |-  ( ( ( T e. LinOp /\ A e. CC ) /\ ( B e. ~H /\ C e. ~H ) ) -> ( T ` ( ( A .h B ) +h C ) ) = ( ( A .h ( T ` B ) ) +h ( T ` C ) ) )
3 1 2 mpanl1
 |-  ( ( A e. CC /\ ( B e. ~H /\ C e. ~H ) ) -> ( T ` ( ( A .h B ) +h C ) ) = ( ( A .h ( T ` B ) ) +h ( T ` C ) ) )
4 3 3impb
 |-  ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( T ` ( ( A .h B ) +h C ) ) = ( ( A .h ( T ` B ) ) +h ( T ` C ) ) )