Metamath Proof Explorer


Theorem lnopmuli

Description: Multiplicative property of a linear Hilbert space operator. (Contributed by NM, 11-May-2005) (New usage is discouraged.)

Ref Expression
Hypothesis lnopl.1
|- T e. LinOp
Assertion lnopmuli
|- ( ( A e. CC /\ B e. ~H ) -> ( T ` ( A .h B ) ) = ( A .h ( T ` B ) ) )

Proof

Step Hyp Ref Expression
1 lnopl.1
 |-  T e. LinOp
2 lnopmul
 |-  ( ( T e. LinOp /\ A e. CC /\ B e. ~H ) -> ( T ` ( A .h B ) ) = ( A .h ( T ` B ) ) )
3 1 2 mp3an1
 |-  ( ( A e. CC /\ B e. ~H ) -> ( T ` ( A .h B ) ) = ( A .h ( T ` B ) ) )