Step |
Hyp |
Ref |
Expression |
1 |
|
lnopl.1 |
|- T e. LinOp |
2 |
|
hvmulcl |
|- ( ( A e. CC /\ B e. ~H ) -> ( A .h B ) e. ~H ) |
3 |
1
|
lnopsubi |
|- ( ( ( A .h B ) e. ~H /\ C e. ~H ) -> ( T ` ( ( A .h B ) -h C ) ) = ( ( T ` ( A .h B ) ) -h ( T ` C ) ) ) |
4 |
2 3
|
stoic3 |
|- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( T ` ( ( A .h B ) -h C ) ) = ( ( T ` ( A .h B ) ) -h ( T ` C ) ) ) |
5 |
1
|
lnopmuli |
|- ( ( A e. CC /\ B e. ~H ) -> ( T ` ( A .h B ) ) = ( A .h ( T ` B ) ) ) |
6 |
5
|
3adant3 |
|- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( T ` ( A .h B ) ) = ( A .h ( T ` B ) ) ) |
7 |
6
|
oveq1d |
|- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( ( T ` ( A .h B ) ) -h ( T ` C ) ) = ( ( A .h ( T ` B ) ) -h ( T ` C ) ) ) |
8 |
4 7
|
eqtrd |
|- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( T ` ( ( A .h B ) -h C ) ) = ( ( A .h ( T ` B ) ) -h ( T ` C ) ) ) |