Metamath Proof Explorer


Theorem lnopunilem1

Description: Lemma for lnopunii . (Contributed by NM, 14-May-2005) (New usage is discouraged.)

Ref Expression
Hypotheses lnopunilem.1
|- T e. LinOp
lnopunilem.2
|- A. x e. ~H ( normh ` ( T ` x ) ) = ( normh ` x )
lnopunilem.3
|- A e. ~H
lnopunilem.4
|- B e. ~H
lnopunilem1.5
|- C e. CC
Assertion lnopunilem1
|- ( Re ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) = ( Re ` ( C x. ( A .ih B ) ) )

Proof

Step Hyp Ref Expression
1 lnopunilem.1
 |-  T e. LinOp
2 lnopunilem.2
 |-  A. x e. ~H ( normh ` ( T ` x ) ) = ( normh ` x )
3 lnopunilem.3
 |-  A e. ~H
4 lnopunilem.4
 |-  B e. ~H
5 lnopunilem1.5
 |-  C e. CC
6 1 lnopfi
 |-  T : ~H --> ~H
7 6 ffvelrni
 |-  ( A e. ~H -> ( T ` A ) e. ~H )
8 3 7 ax-mp
 |-  ( T ` A ) e. ~H
9 6 ffvelrni
 |-  ( B e. ~H -> ( T ` B ) e. ~H )
10 4 9 ax-mp
 |-  ( T ` B ) e. ~H
11 8 10 hicli
 |-  ( ( T ` A ) .ih ( T ` B ) ) e. CC
12 5 11 mulcli
 |-  ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) e. CC
13 reval
 |-  ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) e. CC -> ( Re ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) = ( ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) + ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) ) / 2 ) )
14 12 13 ax-mp
 |-  ( Re ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) = ( ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) + ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) ) / 2 )
15 3 4 hicli
 |-  ( A .ih B ) e. CC
16 5 15 mulcli
 |-  ( C x. ( A .ih B ) ) e. CC
17 reval
 |-  ( ( C x. ( A .ih B ) ) e. CC -> ( Re ` ( C x. ( A .ih B ) ) ) = ( ( ( C x. ( A .ih B ) ) + ( * ` ( C x. ( A .ih B ) ) ) ) / 2 ) )
18 16 17 ax-mp
 |-  ( Re ` ( C x. ( A .ih B ) ) ) = ( ( ( C x. ( A .ih B ) ) + ( * ` ( C x. ( A .ih B ) ) ) ) / 2 )
19 2fveq3
 |-  ( x = y -> ( normh ` ( T ` x ) ) = ( normh ` ( T ` y ) ) )
20 fveq2
 |-  ( x = y -> ( normh ` x ) = ( normh ` y ) )
21 19 20 eqeq12d
 |-  ( x = y -> ( ( normh ` ( T ` x ) ) = ( normh ` x ) <-> ( normh ` ( T ` y ) ) = ( normh ` y ) ) )
22 21 cbvralvw
 |-  ( A. x e. ~H ( normh ` ( T ` x ) ) = ( normh ` x ) <-> A. y e. ~H ( normh ` ( T ` y ) ) = ( normh ` y ) )
23 2 22 mpbi
 |-  A. y e. ~H ( normh ` ( T ` y ) ) = ( normh ` y )
24 oveq1
 |-  ( ( normh ` ( T ` y ) ) = ( normh ` y ) -> ( ( normh ` ( T ` y ) ) ^ 2 ) = ( ( normh ` y ) ^ 2 ) )
25 6 ffvelrni
 |-  ( y e. ~H -> ( T ` y ) e. ~H )
26 normsq
 |-  ( ( T ` y ) e. ~H -> ( ( normh ` ( T ` y ) ) ^ 2 ) = ( ( T ` y ) .ih ( T ` y ) ) )
27 25 26 syl
 |-  ( y e. ~H -> ( ( normh ` ( T ` y ) ) ^ 2 ) = ( ( T ` y ) .ih ( T ` y ) ) )
28 normsq
 |-  ( y e. ~H -> ( ( normh ` y ) ^ 2 ) = ( y .ih y ) )
29 27 28 eqeq12d
 |-  ( y e. ~H -> ( ( ( normh ` ( T ` y ) ) ^ 2 ) = ( ( normh ` y ) ^ 2 ) <-> ( ( T ` y ) .ih ( T ` y ) ) = ( y .ih y ) ) )
30 24 29 syl5ib
 |-  ( y e. ~H -> ( ( normh ` ( T ` y ) ) = ( normh ` y ) -> ( ( T ` y ) .ih ( T ` y ) ) = ( y .ih y ) ) )
31 30 ralimia
 |-  ( A. y e. ~H ( normh ` ( T ` y ) ) = ( normh ` y ) -> A. y e. ~H ( ( T ` y ) .ih ( T ` y ) ) = ( y .ih y ) )
32 23 31 ax-mp
 |-  A. y e. ~H ( ( T ` y ) .ih ( T ` y ) ) = ( y .ih y )
33 fveq2
 |-  ( y = A -> ( T ` y ) = ( T ` A ) )
34 33 33 oveq12d
 |-  ( y = A -> ( ( T ` y ) .ih ( T ` y ) ) = ( ( T ` A ) .ih ( T ` A ) ) )
35 id
 |-  ( y = A -> y = A )
36 35 35 oveq12d
 |-  ( y = A -> ( y .ih y ) = ( A .ih A ) )
37 34 36 eqeq12d
 |-  ( y = A -> ( ( ( T ` y ) .ih ( T ` y ) ) = ( y .ih y ) <-> ( ( T ` A ) .ih ( T ` A ) ) = ( A .ih A ) ) )
38 37 rspcv
 |-  ( A e. ~H -> ( A. y e. ~H ( ( T ` y ) .ih ( T ` y ) ) = ( y .ih y ) -> ( ( T ` A ) .ih ( T ` A ) ) = ( A .ih A ) ) )
39 3 32 38 mp2
 |-  ( ( T ` A ) .ih ( T ` A ) ) = ( A .ih A )
40 39 oveq2i
 |-  ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) = ( ( * ` C ) x. ( A .ih A ) )
41 40 oveq2i
 |-  ( C x. ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) ) = ( C x. ( ( * ` C ) x. ( A .ih A ) ) )
42 fveq2
 |-  ( y = B -> ( T ` y ) = ( T ` B ) )
43 42 42 oveq12d
 |-  ( y = B -> ( ( T ` y ) .ih ( T ` y ) ) = ( ( T ` B ) .ih ( T ` B ) ) )
44 id
 |-  ( y = B -> y = B )
45 44 44 oveq12d
 |-  ( y = B -> ( y .ih y ) = ( B .ih B ) )
46 43 45 eqeq12d
 |-  ( y = B -> ( ( ( T ` y ) .ih ( T ` y ) ) = ( y .ih y ) <-> ( ( T ` B ) .ih ( T ` B ) ) = ( B .ih B ) ) )
47 46 rspcv
 |-  ( B e. ~H -> ( A. y e. ~H ( ( T ` y ) .ih ( T ` y ) ) = ( y .ih y ) -> ( ( T ` B ) .ih ( T ` B ) ) = ( B .ih B ) ) )
48 4 32 47 mp2
 |-  ( ( T ` B ) .ih ( T ` B ) ) = ( B .ih B )
49 41 48 oveq12i
 |-  ( ( C x. ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) ) + ( ( T ` B ) .ih ( T ` B ) ) ) = ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( B .ih B ) )
50 49 oveq1i
 |-  ( ( ( C x. ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) ) + ( ( T ` B ) .ih ( T ` B ) ) ) + ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) + ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) ) ) = ( ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( B .ih B ) ) + ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) + ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) ) )
51 5 cjcli
 |-  ( * ` C ) e. CC
52 8 8 hicli
 |-  ( ( T ` A ) .ih ( T ` A ) ) e. CC
53 51 52 mulcli
 |-  ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) e. CC
54 5 53 mulcli
 |-  ( C x. ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) ) e. CC
55 10 10 hicli
 |-  ( ( T ` B ) .ih ( T ` B ) ) e. CC
56 12 cjcli
 |-  ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) e. CC
57 54 55 12 56 add42i
 |-  ( ( ( C x. ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) ) + ( ( T ` B ) .ih ( T ` B ) ) ) + ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) + ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) ) ) = ( ( ( C x. ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) ) + ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) + ( ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) + ( ( T ` B ) .ih ( T ` B ) ) ) )
58 3 3 hicli
 |-  ( A .ih A ) e. CC
59 51 58 mulcli
 |-  ( ( * ` C ) x. ( A .ih A ) ) e. CC
60 5 59 mulcli
 |-  ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) e. CC
61 4 4 hicli
 |-  ( B .ih B ) e. CC
62 16 cjcli
 |-  ( * ` ( C x. ( A .ih B ) ) ) e. CC
63 60 61 16 62 add42i
 |-  ( ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( B .ih B ) ) + ( ( C x. ( A .ih B ) ) + ( * ` ( C x. ( A .ih B ) ) ) ) ) = ( ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( C x. ( A .ih B ) ) ) + ( ( * ` ( C x. ( A .ih B ) ) ) + ( B .ih B ) ) )
64 5 3 hvmulcli
 |-  ( C .h A ) e. ~H
65 64 4 hvaddcli
 |-  ( ( C .h A ) +h B ) e. ~H
66 fveq2
 |-  ( y = ( ( C .h A ) +h B ) -> ( T ` y ) = ( T ` ( ( C .h A ) +h B ) ) )
67 66 66 oveq12d
 |-  ( y = ( ( C .h A ) +h B ) -> ( ( T ` y ) .ih ( T ` y ) ) = ( ( T ` ( ( C .h A ) +h B ) ) .ih ( T ` ( ( C .h A ) +h B ) ) ) )
68 id
 |-  ( y = ( ( C .h A ) +h B ) -> y = ( ( C .h A ) +h B ) )
69 68 68 oveq12d
 |-  ( y = ( ( C .h A ) +h B ) -> ( y .ih y ) = ( ( ( C .h A ) +h B ) .ih ( ( C .h A ) +h B ) ) )
70 67 69 eqeq12d
 |-  ( y = ( ( C .h A ) +h B ) -> ( ( ( T ` y ) .ih ( T ` y ) ) = ( y .ih y ) <-> ( ( T ` ( ( C .h A ) +h B ) ) .ih ( T ` ( ( C .h A ) +h B ) ) ) = ( ( ( C .h A ) +h B ) .ih ( ( C .h A ) +h B ) ) ) )
71 70 rspcv
 |-  ( ( ( C .h A ) +h B ) e. ~H -> ( A. y e. ~H ( ( T ` y ) .ih ( T ` y ) ) = ( y .ih y ) -> ( ( T ` ( ( C .h A ) +h B ) ) .ih ( T ` ( ( C .h A ) +h B ) ) ) = ( ( ( C .h A ) +h B ) .ih ( ( C .h A ) +h B ) ) ) )
72 65 32 71 mp2
 |-  ( ( T ` ( ( C .h A ) +h B ) ) .ih ( T ` ( ( C .h A ) +h B ) ) ) = ( ( ( C .h A ) +h B ) .ih ( ( C .h A ) +h B ) )
73 ax-his2
 |-  ( ( ( C .h A ) e. ~H /\ B e. ~H /\ ( ( C .h A ) +h B ) e. ~H ) -> ( ( ( C .h A ) +h B ) .ih ( ( C .h A ) +h B ) ) = ( ( ( C .h A ) .ih ( ( C .h A ) +h B ) ) + ( B .ih ( ( C .h A ) +h B ) ) ) )
74 64 4 65 73 mp3an
 |-  ( ( ( C .h A ) +h B ) .ih ( ( C .h A ) +h B ) ) = ( ( ( C .h A ) .ih ( ( C .h A ) +h B ) ) + ( B .ih ( ( C .h A ) +h B ) ) )
75 ax-his3
 |-  ( ( C e. CC /\ A e. ~H /\ ( ( C .h A ) +h B ) e. ~H ) -> ( ( C .h A ) .ih ( ( C .h A ) +h B ) ) = ( C x. ( A .ih ( ( C .h A ) +h B ) ) ) )
76 5 3 65 75 mp3an
 |-  ( ( C .h A ) .ih ( ( C .h A ) +h B ) ) = ( C x. ( A .ih ( ( C .h A ) +h B ) ) )
77 his7
 |-  ( ( A e. ~H /\ ( C .h A ) e. ~H /\ B e. ~H ) -> ( A .ih ( ( C .h A ) +h B ) ) = ( ( A .ih ( C .h A ) ) + ( A .ih B ) ) )
78 3 64 4 77 mp3an
 |-  ( A .ih ( ( C .h A ) +h B ) ) = ( ( A .ih ( C .h A ) ) + ( A .ih B ) )
79 his5
 |-  ( ( C e. CC /\ A e. ~H /\ A e. ~H ) -> ( A .ih ( C .h A ) ) = ( ( * ` C ) x. ( A .ih A ) ) )
80 5 3 3 79 mp3an
 |-  ( A .ih ( C .h A ) ) = ( ( * ` C ) x. ( A .ih A ) )
81 80 oveq1i
 |-  ( ( A .ih ( C .h A ) ) + ( A .ih B ) ) = ( ( ( * ` C ) x. ( A .ih A ) ) + ( A .ih B ) )
82 78 81 eqtri
 |-  ( A .ih ( ( C .h A ) +h B ) ) = ( ( ( * ` C ) x. ( A .ih A ) ) + ( A .ih B ) )
83 82 oveq2i
 |-  ( C x. ( A .ih ( ( C .h A ) +h B ) ) ) = ( C x. ( ( ( * ` C ) x. ( A .ih A ) ) + ( A .ih B ) ) )
84 5 59 15 adddii
 |-  ( C x. ( ( ( * ` C ) x. ( A .ih A ) ) + ( A .ih B ) ) ) = ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( C x. ( A .ih B ) ) )
85 76 83 84 3eqtri
 |-  ( ( C .h A ) .ih ( ( C .h A ) +h B ) ) = ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( C x. ( A .ih B ) ) )
86 his7
 |-  ( ( B e. ~H /\ ( C .h A ) e. ~H /\ B e. ~H ) -> ( B .ih ( ( C .h A ) +h B ) ) = ( ( B .ih ( C .h A ) ) + ( B .ih B ) ) )
87 4 64 4 86 mp3an
 |-  ( B .ih ( ( C .h A ) +h B ) ) = ( ( B .ih ( C .h A ) ) + ( B .ih B ) )
88 his5
 |-  ( ( C e. CC /\ B e. ~H /\ A e. ~H ) -> ( B .ih ( C .h A ) ) = ( ( * ` C ) x. ( B .ih A ) ) )
89 5 4 3 88 mp3an
 |-  ( B .ih ( C .h A ) ) = ( ( * ` C ) x. ( B .ih A ) )
90 5 15 cjmuli
 |-  ( * ` ( C x. ( A .ih B ) ) ) = ( ( * ` C ) x. ( * ` ( A .ih B ) ) )
91 4 3 his1i
 |-  ( B .ih A ) = ( * ` ( A .ih B ) )
92 91 oveq2i
 |-  ( ( * ` C ) x. ( B .ih A ) ) = ( ( * ` C ) x. ( * ` ( A .ih B ) ) )
93 90 92 eqtr4i
 |-  ( * ` ( C x. ( A .ih B ) ) ) = ( ( * ` C ) x. ( B .ih A ) )
94 89 93 eqtr4i
 |-  ( B .ih ( C .h A ) ) = ( * ` ( C x. ( A .ih B ) ) )
95 94 oveq1i
 |-  ( ( B .ih ( C .h A ) ) + ( B .ih B ) ) = ( ( * ` ( C x. ( A .ih B ) ) ) + ( B .ih B ) )
96 87 95 eqtri
 |-  ( B .ih ( ( C .h A ) +h B ) ) = ( ( * ` ( C x. ( A .ih B ) ) ) + ( B .ih B ) )
97 85 96 oveq12i
 |-  ( ( ( C .h A ) .ih ( ( C .h A ) +h B ) ) + ( B .ih ( ( C .h A ) +h B ) ) ) = ( ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( C x. ( A .ih B ) ) ) + ( ( * ` ( C x. ( A .ih B ) ) ) + ( B .ih B ) ) )
98 72 74 97 3eqtrri
 |-  ( ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( C x. ( A .ih B ) ) ) + ( ( * ` ( C x. ( A .ih B ) ) ) + ( B .ih B ) ) ) = ( ( T ` ( ( C .h A ) +h B ) ) .ih ( T ` ( ( C .h A ) +h B ) ) )
99 1 lnopli
 |-  ( ( C e. CC /\ A e. ~H /\ B e. ~H ) -> ( T ` ( ( C .h A ) +h B ) ) = ( ( C .h ( T ` A ) ) +h ( T ` B ) ) )
100 5 3 4 99 mp3an
 |-  ( T ` ( ( C .h A ) +h B ) ) = ( ( C .h ( T ` A ) ) +h ( T ` B ) )
101 100 100 oveq12i
 |-  ( ( T ` ( ( C .h A ) +h B ) ) .ih ( T ` ( ( C .h A ) +h B ) ) ) = ( ( ( C .h ( T ` A ) ) +h ( T ` B ) ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) )
102 5 8 hvmulcli
 |-  ( C .h ( T ` A ) ) e. ~H
103 102 10 hvaddcli
 |-  ( ( C .h ( T ` A ) ) +h ( T ` B ) ) e. ~H
104 ax-his2
 |-  ( ( ( C .h ( T ` A ) ) e. ~H /\ ( T ` B ) e. ~H /\ ( ( C .h ( T ` A ) ) +h ( T ` B ) ) e. ~H ) -> ( ( ( C .h ( T ` A ) ) +h ( T ` B ) ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) = ( ( ( C .h ( T ` A ) ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) + ( ( T ` B ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) ) )
105 102 10 103 104 mp3an
 |-  ( ( ( C .h ( T ` A ) ) +h ( T ` B ) ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) = ( ( ( C .h ( T ` A ) ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) + ( ( T ` B ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) )
106 101 105 eqtri
 |-  ( ( T ` ( ( C .h A ) +h B ) ) .ih ( T ` ( ( C .h A ) +h B ) ) ) = ( ( ( C .h ( T ` A ) ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) + ( ( T ` B ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) )
107 ax-his3
 |-  ( ( C e. CC /\ ( T ` A ) e. ~H /\ ( ( C .h ( T ` A ) ) +h ( T ` B ) ) e. ~H ) -> ( ( C .h ( T ` A ) ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) = ( C x. ( ( T ` A ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) ) )
108 5 8 103 107 mp3an
 |-  ( ( C .h ( T ` A ) ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) = ( C x. ( ( T ` A ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) )
109 his7
 |-  ( ( ( T ` A ) e. ~H /\ ( C .h ( T ` A ) ) e. ~H /\ ( T ` B ) e. ~H ) -> ( ( T ` A ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) = ( ( ( T ` A ) .ih ( C .h ( T ` A ) ) ) + ( ( T ` A ) .ih ( T ` B ) ) ) )
110 8 102 10 109 mp3an
 |-  ( ( T ` A ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) = ( ( ( T ` A ) .ih ( C .h ( T ` A ) ) ) + ( ( T ` A ) .ih ( T ` B ) ) )
111 his5
 |-  ( ( C e. CC /\ ( T ` A ) e. ~H /\ ( T ` A ) e. ~H ) -> ( ( T ` A ) .ih ( C .h ( T ` A ) ) ) = ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) )
112 5 8 8 111 mp3an
 |-  ( ( T ` A ) .ih ( C .h ( T ` A ) ) ) = ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) )
113 112 oveq1i
 |-  ( ( ( T ` A ) .ih ( C .h ( T ` A ) ) ) + ( ( T ` A ) .ih ( T ` B ) ) ) = ( ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) + ( ( T ` A ) .ih ( T ` B ) ) )
114 110 113 eqtri
 |-  ( ( T ` A ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) = ( ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) + ( ( T ` A ) .ih ( T ` B ) ) )
115 114 oveq2i
 |-  ( C x. ( ( T ` A ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) ) = ( C x. ( ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) + ( ( T ` A ) .ih ( T ` B ) ) ) )
116 5 53 11 adddii
 |-  ( C x. ( ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) + ( ( T ` A ) .ih ( T ` B ) ) ) ) = ( ( C x. ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) ) + ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) )
117 108 115 116 3eqtri
 |-  ( ( C .h ( T ` A ) ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) = ( ( C x. ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) ) + ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) )
118 his7
 |-  ( ( ( T ` B ) e. ~H /\ ( C .h ( T ` A ) ) e. ~H /\ ( T ` B ) e. ~H ) -> ( ( T ` B ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) = ( ( ( T ` B ) .ih ( C .h ( T ` A ) ) ) + ( ( T ` B ) .ih ( T ` B ) ) ) )
119 10 102 10 118 mp3an
 |-  ( ( T ` B ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) = ( ( ( T ` B ) .ih ( C .h ( T ` A ) ) ) + ( ( T ` B ) .ih ( T ` B ) ) )
120 his5
 |-  ( ( C e. CC /\ ( T ` B ) e. ~H /\ ( T ` A ) e. ~H ) -> ( ( T ` B ) .ih ( C .h ( T ` A ) ) ) = ( ( * ` C ) x. ( ( T ` B ) .ih ( T ` A ) ) ) )
121 5 10 8 120 mp3an
 |-  ( ( T ` B ) .ih ( C .h ( T ` A ) ) ) = ( ( * ` C ) x. ( ( T ` B ) .ih ( T ` A ) ) )
122 5 11 cjmuli
 |-  ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) = ( ( * ` C ) x. ( * ` ( ( T ` A ) .ih ( T ` B ) ) ) )
123 10 8 his1i
 |-  ( ( T ` B ) .ih ( T ` A ) ) = ( * ` ( ( T ` A ) .ih ( T ` B ) ) )
124 123 oveq2i
 |-  ( ( * ` C ) x. ( ( T ` B ) .ih ( T ` A ) ) ) = ( ( * ` C ) x. ( * ` ( ( T ` A ) .ih ( T ` B ) ) ) )
125 122 124 eqtr4i
 |-  ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) = ( ( * ` C ) x. ( ( T ` B ) .ih ( T ` A ) ) )
126 121 125 eqtr4i
 |-  ( ( T ` B ) .ih ( C .h ( T ` A ) ) ) = ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) )
127 126 oveq1i
 |-  ( ( ( T ` B ) .ih ( C .h ( T ` A ) ) ) + ( ( T ` B ) .ih ( T ` B ) ) ) = ( ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) + ( ( T ` B ) .ih ( T ` B ) ) )
128 119 127 eqtri
 |-  ( ( T ` B ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) = ( ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) + ( ( T ` B ) .ih ( T ` B ) ) )
129 117 128 oveq12i
 |-  ( ( ( C .h ( T ` A ) ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) + ( ( T ` B ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) ) = ( ( ( C x. ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) ) + ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) + ( ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) + ( ( T ` B ) .ih ( T ` B ) ) ) )
130 98 106 129 3eqtrri
 |-  ( ( ( C x. ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) ) + ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) + ( ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) + ( ( T ` B ) .ih ( T ` B ) ) ) ) = ( ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( C x. ( A .ih B ) ) ) + ( ( * ` ( C x. ( A .ih B ) ) ) + ( B .ih B ) ) )
131 63 130 eqtr4i
 |-  ( ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( B .ih B ) ) + ( ( C x. ( A .ih B ) ) + ( * ` ( C x. ( A .ih B ) ) ) ) ) = ( ( ( C x. ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) ) + ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) + ( ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) + ( ( T ` B ) .ih ( T ` B ) ) ) )
132 57 131 eqtr4i
 |-  ( ( ( C x. ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) ) + ( ( T ` B ) .ih ( T ` B ) ) ) + ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) + ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) ) ) = ( ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( B .ih B ) ) + ( ( C x. ( A .ih B ) ) + ( * ` ( C x. ( A .ih B ) ) ) ) )
133 50 132 eqtr3i
 |-  ( ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( B .ih B ) ) + ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) + ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) ) ) = ( ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( B .ih B ) ) + ( ( C x. ( A .ih B ) ) + ( * ` ( C x. ( A .ih B ) ) ) ) )
134 60 61 addcli
 |-  ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( B .ih B ) ) e. CC
135 12 56 addcli
 |-  ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) + ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) ) e. CC
136 16 62 addcli
 |-  ( ( C x. ( A .ih B ) ) + ( * ` ( C x. ( A .ih B ) ) ) ) e. CC
137 134 135 136 addcani
 |-  ( ( ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( B .ih B ) ) + ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) + ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) ) ) = ( ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( B .ih B ) ) + ( ( C x. ( A .ih B ) ) + ( * ` ( C x. ( A .ih B ) ) ) ) ) <-> ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) + ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) ) = ( ( C x. ( A .ih B ) ) + ( * ` ( C x. ( A .ih B ) ) ) ) )
138 133 137 mpbi
 |-  ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) + ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) ) = ( ( C x. ( A .ih B ) ) + ( * ` ( C x. ( A .ih B ) ) ) )
139 138 oveq1i
 |-  ( ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) + ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) ) / 2 ) = ( ( ( C x. ( A .ih B ) ) + ( * ` ( C x. ( A .ih B ) ) ) ) / 2 )
140 18 139 eqtr4i
 |-  ( Re ` ( C x. ( A .ih B ) ) ) = ( ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) + ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) ) / 2 )
141 14 140 eqtr4i
 |-  ( Re ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) = ( Re ` ( C x. ( A .ih B ) ) )