| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lnopunilem.1 | 
							 |-  T e. LinOp  | 
						
						
							| 2 | 
							
								
							 | 
							lnopunilem.2 | 
							 |-  A. x e. ~H ( normh ` ( T ` x ) ) = ( normh ` x )  | 
						
						
							| 3 | 
							
								
							 | 
							lnopunilem.3 | 
							 |-  A e. ~H  | 
						
						
							| 4 | 
							
								
							 | 
							lnopunilem.4 | 
							 |-  B e. ~H  | 
						
						
							| 5 | 
							
								
							 | 
							lnopunilem1.5 | 
							 |-  C e. CC  | 
						
						
							| 6 | 
							
								1
							 | 
							lnopfi | 
							 |-  T : ~H --> ~H  | 
						
						
							| 7 | 
							
								6
							 | 
							ffvelcdmi | 
							 |-  ( A e. ~H -> ( T ` A ) e. ~H )  | 
						
						
							| 8 | 
							
								3 7
							 | 
							ax-mp | 
							 |-  ( T ` A ) e. ~H  | 
						
						
							| 9 | 
							
								6
							 | 
							ffvelcdmi | 
							 |-  ( B e. ~H -> ( T ` B ) e. ~H )  | 
						
						
							| 10 | 
							
								4 9
							 | 
							ax-mp | 
							 |-  ( T ` B ) e. ~H  | 
						
						
							| 11 | 
							
								8 10
							 | 
							hicli | 
							 |-  ( ( T ` A ) .ih ( T ` B ) ) e. CC  | 
						
						
							| 12 | 
							
								5 11
							 | 
							mulcli | 
							 |-  ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) e. CC  | 
						
						
							| 13 | 
							
								
							 | 
							reval | 
							 |-  ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) e. CC -> ( Re ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) = ( ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) + ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) ) / 2 ) )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							ax-mp | 
							 |-  ( Re ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) = ( ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) + ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) ) / 2 )  | 
						
						
							| 15 | 
							
								3 4
							 | 
							hicli | 
							 |-  ( A .ih B ) e. CC  | 
						
						
							| 16 | 
							
								5 15
							 | 
							mulcli | 
							 |-  ( C x. ( A .ih B ) ) e. CC  | 
						
						
							| 17 | 
							
								
							 | 
							reval | 
							 |-  ( ( C x. ( A .ih B ) ) e. CC -> ( Re ` ( C x. ( A .ih B ) ) ) = ( ( ( C x. ( A .ih B ) ) + ( * ` ( C x. ( A .ih B ) ) ) ) / 2 ) )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							ax-mp | 
							 |-  ( Re ` ( C x. ( A .ih B ) ) ) = ( ( ( C x. ( A .ih B ) ) + ( * ` ( C x. ( A .ih B ) ) ) ) / 2 )  | 
						
						
							| 19 | 
							
								
							 | 
							2fveq3 | 
							 |-  ( x = y -> ( normh ` ( T ` x ) ) = ( normh ` ( T ` y ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							fveq2 | 
							 |-  ( x = y -> ( normh ` x ) = ( normh ` y ) )  | 
						
						
							| 21 | 
							
								19 20
							 | 
							eqeq12d | 
							 |-  ( x = y -> ( ( normh ` ( T ` x ) ) = ( normh ` x ) <-> ( normh ` ( T ` y ) ) = ( normh ` y ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							cbvralvw | 
							 |-  ( A. x e. ~H ( normh ` ( T ` x ) ) = ( normh ` x ) <-> A. y e. ~H ( normh ` ( T ` y ) ) = ( normh ` y ) )  | 
						
						
							| 23 | 
							
								2 22
							 | 
							mpbi | 
							 |-  A. y e. ~H ( normh ` ( T ` y ) ) = ( normh ` y )  | 
						
						
							| 24 | 
							
								
							 | 
							oveq1 | 
							 |-  ( ( normh ` ( T ` y ) ) = ( normh ` y ) -> ( ( normh ` ( T ` y ) ) ^ 2 ) = ( ( normh ` y ) ^ 2 ) )  | 
						
						
							| 25 | 
							
								6
							 | 
							ffvelcdmi | 
							 |-  ( y e. ~H -> ( T ` y ) e. ~H )  | 
						
						
							| 26 | 
							
								
							 | 
							normsq | 
							 |-  ( ( T ` y ) e. ~H -> ( ( normh ` ( T ` y ) ) ^ 2 ) = ( ( T ` y ) .ih ( T ` y ) ) )  | 
						
						
							| 27 | 
							
								25 26
							 | 
							syl | 
							 |-  ( y e. ~H -> ( ( normh ` ( T ` y ) ) ^ 2 ) = ( ( T ` y ) .ih ( T ` y ) ) )  | 
						
						
							| 28 | 
							
								
							 | 
							normsq | 
							 |-  ( y e. ~H -> ( ( normh ` y ) ^ 2 ) = ( y .ih y ) )  | 
						
						
							| 29 | 
							
								27 28
							 | 
							eqeq12d | 
							 |-  ( y e. ~H -> ( ( ( normh ` ( T ` y ) ) ^ 2 ) = ( ( normh ` y ) ^ 2 ) <-> ( ( T ` y ) .ih ( T ` y ) ) = ( y .ih y ) ) )  | 
						
						
							| 30 | 
							
								24 29
							 | 
							imbitrid | 
							 |-  ( y e. ~H -> ( ( normh ` ( T ` y ) ) = ( normh ` y ) -> ( ( T ` y ) .ih ( T ` y ) ) = ( y .ih y ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							ralimia | 
							 |-  ( A. y e. ~H ( normh ` ( T ` y ) ) = ( normh ` y ) -> A. y e. ~H ( ( T ` y ) .ih ( T ` y ) ) = ( y .ih y ) )  | 
						
						
							| 32 | 
							
								23 31
							 | 
							ax-mp | 
							 |-  A. y e. ~H ( ( T ` y ) .ih ( T ` y ) ) = ( y .ih y )  | 
						
						
							| 33 | 
							
								
							 | 
							fveq2 | 
							 |-  ( y = A -> ( T ` y ) = ( T ` A ) )  | 
						
						
							| 34 | 
							
								33 33
							 | 
							oveq12d | 
							 |-  ( y = A -> ( ( T ` y ) .ih ( T ` y ) ) = ( ( T ` A ) .ih ( T ` A ) ) )  | 
						
						
							| 35 | 
							
								
							 | 
							id | 
							 |-  ( y = A -> y = A )  | 
						
						
							| 36 | 
							
								35 35
							 | 
							oveq12d | 
							 |-  ( y = A -> ( y .ih y ) = ( A .ih A ) )  | 
						
						
							| 37 | 
							
								34 36
							 | 
							eqeq12d | 
							 |-  ( y = A -> ( ( ( T ` y ) .ih ( T ` y ) ) = ( y .ih y ) <-> ( ( T ` A ) .ih ( T ` A ) ) = ( A .ih A ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							rspcv | 
							 |-  ( A e. ~H -> ( A. y e. ~H ( ( T ` y ) .ih ( T ` y ) ) = ( y .ih y ) -> ( ( T ` A ) .ih ( T ` A ) ) = ( A .ih A ) ) )  | 
						
						
							| 39 | 
							
								3 32 38
							 | 
							mp2 | 
							 |-  ( ( T ` A ) .ih ( T ` A ) ) = ( A .ih A )  | 
						
						
							| 40 | 
							
								39
							 | 
							oveq2i | 
							 |-  ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) = ( ( * ` C ) x. ( A .ih A ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							oveq2i | 
							 |-  ( C x. ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) ) = ( C x. ( ( * ` C ) x. ( A .ih A ) ) )  | 
						
						
							| 42 | 
							
								
							 | 
							fveq2 | 
							 |-  ( y = B -> ( T ` y ) = ( T ` B ) )  | 
						
						
							| 43 | 
							
								42 42
							 | 
							oveq12d | 
							 |-  ( y = B -> ( ( T ` y ) .ih ( T ` y ) ) = ( ( T ` B ) .ih ( T ` B ) ) )  | 
						
						
							| 44 | 
							
								
							 | 
							id | 
							 |-  ( y = B -> y = B )  | 
						
						
							| 45 | 
							
								44 44
							 | 
							oveq12d | 
							 |-  ( y = B -> ( y .ih y ) = ( B .ih B ) )  | 
						
						
							| 46 | 
							
								43 45
							 | 
							eqeq12d | 
							 |-  ( y = B -> ( ( ( T ` y ) .ih ( T ` y ) ) = ( y .ih y ) <-> ( ( T ` B ) .ih ( T ` B ) ) = ( B .ih B ) ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							rspcv | 
							 |-  ( B e. ~H -> ( A. y e. ~H ( ( T ` y ) .ih ( T ` y ) ) = ( y .ih y ) -> ( ( T ` B ) .ih ( T ` B ) ) = ( B .ih B ) ) )  | 
						
						
							| 48 | 
							
								4 32 47
							 | 
							mp2 | 
							 |-  ( ( T ` B ) .ih ( T ` B ) ) = ( B .ih B )  | 
						
						
							| 49 | 
							
								41 48
							 | 
							oveq12i | 
							 |-  ( ( C x. ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) ) + ( ( T ` B ) .ih ( T ` B ) ) ) = ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( B .ih B ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							oveq1i | 
							 |-  ( ( ( C x. ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) ) + ( ( T ` B ) .ih ( T ` B ) ) ) + ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) + ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) ) ) = ( ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( B .ih B ) ) + ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) + ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) ) )  | 
						
						
							| 51 | 
							
								5
							 | 
							cjcli | 
							 |-  ( * ` C ) e. CC  | 
						
						
							| 52 | 
							
								8 8
							 | 
							hicli | 
							 |-  ( ( T ` A ) .ih ( T ` A ) ) e. CC  | 
						
						
							| 53 | 
							
								51 52
							 | 
							mulcli | 
							 |-  ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) e. CC  | 
						
						
							| 54 | 
							
								5 53
							 | 
							mulcli | 
							 |-  ( C x. ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) ) e. CC  | 
						
						
							| 55 | 
							
								10 10
							 | 
							hicli | 
							 |-  ( ( T ` B ) .ih ( T ` B ) ) e. CC  | 
						
						
							| 56 | 
							
								12
							 | 
							cjcli | 
							 |-  ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) e. CC  | 
						
						
							| 57 | 
							
								54 55 12 56
							 | 
							add42i | 
							 |-  ( ( ( C x. ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) ) + ( ( T ` B ) .ih ( T ` B ) ) ) + ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) + ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) ) ) = ( ( ( C x. ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) ) + ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) + ( ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) + ( ( T ` B ) .ih ( T ` B ) ) ) )  | 
						
						
							| 58 | 
							
								3 3
							 | 
							hicli | 
							 |-  ( A .ih A ) e. CC  | 
						
						
							| 59 | 
							
								51 58
							 | 
							mulcli | 
							 |-  ( ( * ` C ) x. ( A .ih A ) ) e. CC  | 
						
						
							| 60 | 
							
								5 59
							 | 
							mulcli | 
							 |-  ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) e. CC  | 
						
						
							| 61 | 
							
								4 4
							 | 
							hicli | 
							 |-  ( B .ih B ) e. CC  | 
						
						
							| 62 | 
							
								16
							 | 
							cjcli | 
							 |-  ( * ` ( C x. ( A .ih B ) ) ) e. CC  | 
						
						
							| 63 | 
							
								60 61 16 62
							 | 
							add42i | 
							 |-  ( ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( B .ih B ) ) + ( ( C x. ( A .ih B ) ) + ( * ` ( C x. ( A .ih B ) ) ) ) ) = ( ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( C x. ( A .ih B ) ) ) + ( ( * ` ( C x. ( A .ih B ) ) ) + ( B .ih B ) ) )  | 
						
						
							| 64 | 
							
								5 3
							 | 
							hvmulcli | 
							 |-  ( C .h A ) e. ~H  | 
						
						
							| 65 | 
							
								64 4
							 | 
							hvaddcli | 
							 |-  ( ( C .h A ) +h B ) e. ~H  | 
						
						
							| 66 | 
							
								
							 | 
							fveq2 | 
							 |-  ( y = ( ( C .h A ) +h B ) -> ( T ` y ) = ( T ` ( ( C .h A ) +h B ) ) )  | 
						
						
							| 67 | 
							
								66 66
							 | 
							oveq12d | 
							 |-  ( y = ( ( C .h A ) +h B ) -> ( ( T ` y ) .ih ( T ` y ) ) = ( ( T ` ( ( C .h A ) +h B ) ) .ih ( T ` ( ( C .h A ) +h B ) ) ) )  | 
						
						
							| 68 | 
							
								
							 | 
							id | 
							 |-  ( y = ( ( C .h A ) +h B ) -> y = ( ( C .h A ) +h B ) )  | 
						
						
							| 69 | 
							
								68 68
							 | 
							oveq12d | 
							 |-  ( y = ( ( C .h A ) +h B ) -> ( y .ih y ) = ( ( ( C .h A ) +h B ) .ih ( ( C .h A ) +h B ) ) )  | 
						
						
							| 70 | 
							
								67 69
							 | 
							eqeq12d | 
							 |-  ( y = ( ( C .h A ) +h B ) -> ( ( ( T ` y ) .ih ( T ` y ) ) = ( y .ih y ) <-> ( ( T ` ( ( C .h A ) +h B ) ) .ih ( T ` ( ( C .h A ) +h B ) ) ) = ( ( ( C .h A ) +h B ) .ih ( ( C .h A ) +h B ) ) ) )  | 
						
						
							| 71 | 
							
								70
							 | 
							rspcv | 
							 |-  ( ( ( C .h A ) +h B ) e. ~H -> ( A. y e. ~H ( ( T ` y ) .ih ( T ` y ) ) = ( y .ih y ) -> ( ( T ` ( ( C .h A ) +h B ) ) .ih ( T ` ( ( C .h A ) +h B ) ) ) = ( ( ( C .h A ) +h B ) .ih ( ( C .h A ) +h B ) ) ) )  | 
						
						
							| 72 | 
							
								65 32 71
							 | 
							mp2 | 
							 |-  ( ( T ` ( ( C .h A ) +h B ) ) .ih ( T ` ( ( C .h A ) +h B ) ) ) = ( ( ( C .h A ) +h B ) .ih ( ( C .h A ) +h B ) )  | 
						
						
							| 73 | 
							
								
							 | 
							ax-his2 | 
							 |-  ( ( ( C .h A ) e. ~H /\ B e. ~H /\ ( ( C .h A ) +h B ) e. ~H ) -> ( ( ( C .h A ) +h B ) .ih ( ( C .h A ) +h B ) ) = ( ( ( C .h A ) .ih ( ( C .h A ) +h B ) ) + ( B .ih ( ( C .h A ) +h B ) ) ) )  | 
						
						
							| 74 | 
							
								64 4 65 73
							 | 
							mp3an | 
							 |-  ( ( ( C .h A ) +h B ) .ih ( ( C .h A ) +h B ) ) = ( ( ( C .h A ) .ih ( ( C .h A ) +h B ) ) + ( B .ih ( ( C .h A ) +h B ) ) )  | 
						
						
							| 75 | 
							
								
							 | 
							ax-his3 | 
							 |-  ( ( C e. CC /\ A e. ~H /\ ( ( C .h A ) +h B ) e. ~H ) -> ( ( C .h A ) .ih ( ( C .h A ) +h B ) ) = ( C x. ( A .ih ( ( C .h A ) +h B ) ) ) )  | 
						
						
							| 76 | 
							
								5 3 65 75
							 | 
							mp3an | 
							 |-  ( ( C .h A ) .ih ( ( C .h A ) +h B ) ) = ( C x. ( A .ih ( ( C .h A ) +h B ) ) )  | 
						
						
							| 77 | 
							
								
							 | 
							his7 | 
							 |-  ( ( A e. ~H /\ ( C .h A ) e. ~H /\ B e. ~H ) -> ( A .ih ( ( C .h A ) +h B ) ) = ( ( A .ih ( C .h A ) ) + ( A .ih B ) ) )  | 
						
						
							| 78 | 
							
								3 64 4 77
							 | 
							mp3an | 
							 |-  ( A .ih ( ( C .h A ) +h B ) ) = ( ( A .ih ( C .h A ) ) + ( A .ih B ) )  | 
						
						
							| 79 | 
							
								
							 | 
							his5 | 
							 |-  ( ( C e. CC /\ A e. ~H /\ A e. ~H ) -> ( A .ih ( C .h A ) ) = ( ( * ` C ) x. ( A .ih A ) ) )  | 
						
						
							| 80 | 
							
								5 3 3 79
							 | 
							mp3an | 
							 |-  ( A .ih ( C .h A ) ) = ( ( * ` C ) x. ( A .ih A ) )  | 
						
						
							| 81 | 
							
								80
							 | 
							oveq1i | 
							 |-  ( ( A .ih ( C .h A ) ) + ( A .ih B ) ) = ( ( ( * ` C ) x. ( A .ih A ) ) + ( A .ih B ) )  | 
						
						
							| 82 | 
							
								78 81
							 | 
							eqtri | 
							 |-  ( A .ih ( ( C .h A ) +h B ) ) = ( ( ( * ` C ) x. ( A .ih A ) ) + ( A .ih B ) )  | 
						
						
							| 83 | 
							
								82
							 | 
							oveq2i | 
							 |-  ( C x. ( A .ih ( ( C .h A ) +h B ) ) ) = ( C x. ( ( ( * ` C ) x. ( A .ih A ) ) + ( A .ih B ) ) )  | 
						
						
							| 84 | 
							
								5 59 15
							 | 
							adddii | 
							 |-  ( C x. ( ( ( * ` C ) x. ( A .ih A ) ) + ( A .ih B ) ) ) = ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( C x. ( A .ih B ) ) )  | 
						
						
							| 85 | 
							
								76 83 84
							 | 
							3eqtri | 
							 |-  ( ( C .h A ) .ih ( ( C .h A ) +h B ) ) = ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( C x. ( A .ih B ) ) )  | 
						
						
							| 86 | 
							
								
							 | 
							his7 | 
							 |-  ( ( B e. ~H /\ ( C .h A ) e. ~H /\ B e. ~H ) -> ( B .ih ( ( C .h A ) +h B ) ) = ( ( B .ih ( C .h A ) ) + ( B .ih B ) ) )  | 
						
						
							| 87 | 
							
								4 64 4 86
							 | 
							mp3an | 
							 |-  ( B .ih ( ( C .h A ) +h B ) ) = ( ( B .ih ( C .h A ) ) + ( B .ih B ) )  | 
						
						
							| 88 | 
							
								
							 | 
							his5 | 
							 |-  ( ( C e. CC /\ B e. ~H /\ A e. ~H ) -> ( B .ih ( C .h A ) ) = ( ( * ` C ) x. ( B .ih A ) ) )  | 
						
						
							| 89 | 
							
								5 4 3 88
							 | 
							mp3an | 
							 |-  ( B .ih ( C .h A ) ) = ( ( * ` C ) x. ( B .ih A ) )  | 
						
						
							| 90 | 
							
								5 15
							 | 
							cjmuli | 
							 |-  ( * ` ( C x. ( A .ih B ) ) ) = ( ( * ` C ) x. ( * ` ( A .ih B ) ) )  | 
						
						
							| 91 | 
							
								4 3
							 | 
							his1i | 
							 |-  ( B .ih A ) = ( * ` ( A .ih B ) )  | 
						
						
							| 92 | 
							
								91
							 | 
							oveq2i | 
							 |-  ( ( * ` C ) x. ( B .ih A ) ) = ( ( * ` C ) x. ( * ` ( A .ih B ) ) )  | 
						
						
							| 93 | 
							
								90 92
							 | 
							eqtr4i | 
							 |-  ( * ` ( C x. ( A .ih B ) ) ) = ( ( * ` C ) x. ( B .ih A ) )  | 
						
						
							| 94 | 
							
								89 93
							 | 
							eqtr4i | 
							 |-  ( B .ih ( C .h A ) ) = ( * ` ( C x. ( A .ih B ) ) )  | 
						
						
							| 95 | 
							
								94
							 | 
							oveq1i | 
							 |-  ( ( B .ih ( C .h A ) ) + ( B .ih B ) ) = ( ( * ` ( C x. ( A .ih B ) ) ) + ( B .ih B ) )  | 
						
						
							| 96 | 
							
								87 95
							 | 
							eqtri | 
							 |-  ( B .ih ( ( C .h A ) +h B ) ) = ( ( * ` ( C x. ( A .ih B ) ) ) + ( B .ih B ) )  | 
						
						
							| 97 | 
							
								85 96
							 | 
							oveq12i | 
							 |-  ( ( ( C .h A ) .ih ( ( C .h A ) +h B ) ) + ( B .ih ( ( C .h A ) +h B ) ) ) = ( ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( C x. ( A .ih B ) ) ) + ( ( * ` ( C x. ( A .ih B ) ) ) + ( B .ih B ) ) )  | 
						
						
							| 98 | 
							
								72 74 97
							 | 
							3eqtrri | 
							 |-  ( ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( C x. ( A .ih B ) ) ) + ( ( * ` ( C x. ( A .ih B ) ) ) + ( B .ih B ) ) ) = ( ( T ` ( ( C .h A ) +h B ) ) .ih ( T ` ( ( C .h A ) +h B ) ) )  | 
						
						
							| 99 | 
							
								1
							 | 
							lnopli | 
							 |-  ( ( C e. CC /\ A e. ~H /\ B e. ~H ) -> ( T ` ( ( C .h A ) +h B ) ) = ( ( C .h ( T ` A ) ) +h ( T ` B ) ) )  | 
						
						
							| 100 | 
							
								5 3 4 99
							 | 
							mp3an | 
							 |-  ( T ` ( ( C .h A ) +h B ) ) = ( ( C .h ( T ` A ) ) +h ( T ` B ) )  | 
						
						
							| 101 | 
							
								100 100
							 | 
							oveq12i | 
							 |-  ( ( T ` ( ( C .h A ) +h B ) ) .ih ( T ` ( ( C .h A ) +h B ) ) ) = ( ( ( C .h ( T ` A ) ) +h ( T ` B ) ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) )  | 
						
						
							| 102 | 
							
								5 8
							 | 
							hvmulcli | 
							 |-  ( C .h ( T ` A ) ) e. ~H  | 
						
						
							| 103 | 
							
								102 10
							 | 
							hvaddcli | 
							 |-  ( ( C .h ( T ` A ) ) +h ( T ` B ) ) e. ~H  | 
						
						
							| 104 | 
							
								
							 | 
							ax-his2 | 
							 |-  ( ( ( C .h ( T ` A ) ) e. ~H /\ ( T ` B ) e. ~H /\ ( ( C .h ( T ` A ) ) +h ( T ` B ) ) e. ~H ) -> ( ( ( C .h ( T ` A ) ) +h ( T ` B ) ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) = ( ( ( C .h ( T ` A ) ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) + ( ( T ` B ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) ) )  | 
						
						
							| 105 | 
							
								102 10 103 104
							 | 
							mp3an | 
							 |-  ( ( ( C .h ( T ` A ) ) +h ( T ` B ) ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) = ( ( ( C .h ( T ` A ) ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) + ( ( T ` B ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) )  | 
						
						
							| 106 | 
							
								101 105
							 | 
							eqtri | 
							 |-  ( ( T ` ( ( C .h A ) +h B ) ) .ih ( T ` ( ( C .h A ) +h B ) ) ) = ( ( ( C .h ( T ` A ) ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) + ( ( T ` B ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) )  | 
						
						
							| 107 | 
							
								
							 | 
							ax-his3 | 
							 |-  ( ( C e. CC /\ ( T ` A ) e. ~H /\ ( ( C .h ( T ` A ) ) +h ( T ` B ) ) e. ~H ) -> ( ( C .h ( T ` A ) ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) = ( C x. ( ( T ` A ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) ) )  | 
						
						
							| 108 | 
							
								5 8 103 107
							 | 
							mp3an | 
							 |-  ( ( C .h ( T ` A ) ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) = ( C x. ( ( T ` A ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) )  | 
						
						
							| 109 | 
							
								
							 | 
							his7 | 
							 |-  ( ( ( T ` A ) e. ~H /\ ( C .h ( T ` A ) ) e. ~H /\ ( T ` B ) e. ~H ) -> ( ( T ` A ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) = ( ( ( T ` A ) .ih ( C .h ( T ` A ) ) ) + ( ( T ` A ) .ih ( T ` B ) ) ) )  | 
						
						
							| 110 | 
							
								8 102 10 109
							 | 
							mp3an | 
							 |-  ( ( T ` A ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) = ( ( ( T ` A ) .ih ( C .h ( T ` A ) ) ) + ( ( T ` A ) .ih ( T ` B ) ) )  | 
						
						
							| 111 | 
							
								
							 | 
							his5 | 
							 |-  ( ( C e. CC /\ ( T ` A ) e. ~H /\ ( T ` A ) e. ~H ) -> ( ( T ` A ) .ih ( C .h ( T ` A ) ) ) = ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) )  | 
						
						
							| 112 | 
							
								5 8 8 111
							 | 
							mp3an | 
							 |-  ( ( T ` A ) .ih ( C .h ( T ` A ) ) ) = ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) )  | 
						
						
							| 113 | 
							
								112
							 | 
							oveq1i | 
							 |-  ( ( ( T ` A ) .ih ( C .h ( T ` A ) ) ) + ( ( T ` A ) .ih ( T ` B ) ) ) = ( ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) + ( ( T ` A ) .ih ( T ` B ) ) )  | 
						
						
							| 114 | 
							
								110 113
							 | 
							eqtri | 
							 |-  ( ( T ` A ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) = ( ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) + ( ( T ` A ) .ih ( T ` B ) ) )  | 
						
						
							| 115 | 
							
								114
							 | 
							oveq2i | 
							 |-  ( C x. ( ( T ` A ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) ) = ( C x. ( ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) + ( ( T ` A ) .ih ( T ` B ) ) ) )  | 
						
						
							| 116 | 
							
								5 53 11
							 | 
							adddii | 
							 |-  ( C x. ( ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) + ( ( T ` A ) .ih ( T ` B ) ) ) ) = ( ( C x. ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) ) + ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) )  | 
						
						
							| 117 | 
							
								108 115 116
							 | 
							3eqtri | 
							 |-  ( ( C .h ( T ` A ) ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) = ( ( C x. ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) ) + ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) )  | 
						
						
							| 118 | 
							
								
							 | 
							his7 | 
							 |-  ( ( ( T ` B ) e. ~H /\ ( C .h ( T ` A ) ) e. ~H /\ ( T ` B ) e. ~H ) -> ( ( T ` B ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) = ( ( ( T ` B ) .ih ( C .h ( T ` A ) ) ) + ( ( T ` B ) .ih ( T ` B ) ) ) )  | 
						
						
							| 119 | 
							
								10 102 10 118
							 | 
							mp3an | 
							 |-  ( ( T ` B ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) = ( ( ( T ` B ) .ih ( C .h ( T ` A ) ) ) + ( ( T ` B ) .ih ( T ` B ) ) )  | 
						
						
							| 120 | 
							
								
							 | 
							his5 | 
							 |-  ( ( C e. CC /\ ( T ` B ) e. ~H /\ ( T ` A ) e. ~H ) -> ( ( T ` B ) .ih ( C .h ( T ` A ) ) ) = ( ( * ` C ) x. ( ( T ` B ) .ih ( T ` A ) ) ) )  | 
						
						
							| 121 | 
							
								5 10 8 120
							 | 
							mp3an | 
							 |-  ( ( T ` B ) .ih ( C .h ( T ` A ) ) ) = ( ( * ` C ) x. ( ( T ` B ) .ih ( T ` A ) ) )  | 
						
						
							| 122 | 
							
								5 11
							 | 
							cjmuli | 
							 |-  ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) = ( ( * ` C ) x. ( * ` ( ( T ` A ) .ih ( T ` B ) ) ) )  | 
						
						
							| 123 | 
							
								10 8
							 | 
							his1i | 
							 |-  ( ( T ` B ) .ih ( T ` A ) ) = ( * ` ( ( T ` A ) .ih ( T ` B ) ) )  | 
						
						
							| 124 | 
							
								123
							 | 
							oveq2i | 
							 |-  ( ( * ` C ) x. ( ( T ` B ) .ih ( T ` A ) ) ) = ( ( * ` C ) x. ( * ` ( ( T ` A ) .ih ( T ` B ) ) ) )  | 
						
						
							| 125 | 
							
								122 124
							 | 
							eqtr4i | 
							 |-  ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) = ( ( * ` C ) x. ( ( T ` B ) .ih ( T ` A ) ) )  | 
						
						
							| 126 | 
							
								121 125
							 | 
							eqtr4i | 
							 |-  ( ( T ` B ) .ih ( C .h ( T ` A ) ) ) = ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) )  | 
						
						
							| 127 | 
							
								126
							 | 
							oveq1i | 
							 |-  ( ( ( T ` B ) .ih ( C .h ( T ` A ) ) ) + ( ( T ` B ) .ih ( T ` B ) ) ) = ( ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) + ( ( T ` B ) .ih ( T ` B ) ) )  | 
						
						
							| 128 | 
							
								119 127
							 | 
							eqtri | 
							 |-  ( ( T ` B ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) = ( ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) + ( ( T ` B ) .ih ( T ` B ) ) )  | 
						
						
							| 129 | 
							
								117 128
							 | 
							oveq12i | 
							 |-  ( ( ( C .h ( T ` A ) ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) + ( ( T ` B ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) ) = ( ( ( C x. ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) ) + ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) + ( ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) + ( ( T ` B ) .ih ( T ` B ) ) ) )  | 
						
						
							| 130 | 
							
								98 106 129
							 | 
							3eqtrri | 
							 |-  ( ( ( C x. ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) ) + ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) + ( ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) + ( ( T ` B ) .ih ( T ` B ) ) ) ) = ( ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( C x. ( A .ih B ) ) ) + ( ( * ` ( C x. ( A .ih B ) ) ) + ( B .ih B ) ) )  | 
						
						
							| 131 | 
							
								63 130
							 | 
							eqtr4i | 
							 |-  ( ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( B .ih B ) ) + ( ( C x. ( A .ih B ) ) + ( * ` ( C x. ( A .ih B ) ) ) ) ) = ( ( ( C x. ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) ) + ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) + ( ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) + ( ( T ` B ) .ih ( T ` B ) ) ) )  | 
						
						
							| 132 | 
							
								57 131
							 | 
							eqtr4i | 
							 |-  ( ( ( C x. ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) ) + ( ( T ` B ) .ih ( T ` B ) ) ) + ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) + ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) ) ) = ( ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( B .ih B ) ) + ( ( C x. ( A .ih B ) ) + ( * ` ( C x. ( A .ih B ) ) ) ) )  | 
						
						
							| 133 | 
							
								50 132
							 | 
							eqtr3i | 
							 |-  ( ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( B .ih B ) ) + ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) + ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) ) ) = ( ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( B .ih B ) ) + ( ( C x. ( A .ih B ) ) + ( * ` ( C x. ( A .ih B ) ) ) ) )  | 
						
						
							| 134 | 
							
								60 61
							 | 
							addcli | 
							 |-  ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( B .ih B ) ) e. CC  | 
						
						
							| 135 | 
							
								12 56
							 | 
							addcli | 
							 |-  ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) + ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) ) e. CC  | 
						
						
							| 136 | 
							
								16 62
							 | 
							addcli | 
							 |-  ( ( C x. ( A .ih B ) ) + ( * ` ( C x. ( A .ih B ) ) ) ) e. CC  | 
						
						
							| 137 | 
							
								134 135 136
							 | 
							addcani | 
							 |-  ( ( ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( B .ih B ) ) + ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) + ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) ) ) = ( ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( B .ih B ) ) + ( ( C x. ( A .ih B ) ) + ( * ` ( C x. ( A .ih B ) ) ) ) ) <-> ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) + ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) ) = ( ( C x. ( A .ih B ) ) + ( * ` ( C x. ( A .ih B ) ) ) ) )  | 
						
						
							| 138 | 
							
								133 137
							 | 
							mpbi | 
							 |-  ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) + ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) ) = ( ( C x. ( A .ih B ) ) + ( * ` ( C x. ( A .ih B ) ) ) )  | 
						
						
							| 139 | 
							
								138
							 | 
							oveq1i | 
							 |-  ( ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) + ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) ) / 2 ) = ( ( ( C x. ( A .ih B ) ) + ( * ` ( C x. ( A .ih B ) ) ) ) / 2 )  | 
						
						
							| 140 | 
							
								18 139
							 | 
							eqtr4i | 
							 |-  ( Re ` ( C x. ( A .ih B ) ) ) = ( ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) + ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) ) / 2 )  | 
						
						
							| 141 | 
							
								14 140
							 | 
							eqtr4i | 
							 |-  ( Re ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) = ( Re ` ( C x. ( A .ih B ) ) )  |