| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmiopp.p |
|- P = ( Base ` G ) |
| 2 |
|
lmiopp.m |
|- .- = ( dist ` G ) |
| 3 |
|
lmiopp.i |
|- I = ( Itv ` G ) |
| 4 |
|
lmiopp.l |
|- L = ( LineG ` G ) |
| 5 |
|
lmiopp.g |
|- ( ph -> G e. TarskiG ) |
| 6 |
|
lmiopp.h |
|- ( ph -> G TarskiGDim>= 2 ) |
| 7 |
|
lmiopp.d |
|- ( ph -> D e. ran L ) |
| 8 |
|
lmiopp.o |
|- O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } |
| 9 |
|
lnperpex.a |
|- ( ph -> A e. D ) |
| 10 |
|
lnperpex.q |
|- ( ph -> Q e. P ) |
| 11 |
|
lnperpex.1 |
|- ( ph -> -. Q e. D ) |
| 12 |
5
|
ad4antr |
|- ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) -> G e. TarskiG ) |
| 13 |
12
|
adantr |
|- ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> G e. TarskiG ) |
| 14 |
|
simprl |
|- ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> p e. P ) |
| 15 |
1 4 3 5 7 9
|
tglnpt |
|- ( ph -> A e. P ) |
| 16 |
15
|
ad2antrr |
|- ( ( ( ph /\ d e. D ) /\ A =/= d ) -> A e. P ) |
| 17 |
16
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> A e. P ) |
| 18 |
|
simprrl |
|- ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> ( A L p ) ( perpG ` G ) D ) |
| 19 |
4 13 18
|
perpln1 |
|- ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> ( A L p ) e. ran L ) |
| 20 |
1 3 4 13 17 14 19
|
tglnne |
|- ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> A =/= p ) |
| 21 |
20
|
necomd |
|- ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> p =/= A ) |
| 22 |
1 3 4 13 14 17 21
|
tgelrnln |
|- ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> ( p L A ) e. ran L ) |
| 23 |
7
|
ad4antr |
|- ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) -> D e. ran L ) |
| 24 |
23
|
adantr |
|- ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> D e. ran L ) |
| 25 |
1 3 4 13 14 17 21
|
tglinecom |
|- ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> ( p L A ) = ( A L p ) ) |
| 26 |
25 18
|
eqbrtrd |
|- ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> ( p L A ) ( perpG ` G ) D ) |
| 27 |
1 2 3 4 13 22 24 26
|
perpcom |
|- ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> D ( perpG ` G ) ( p L A ) ) |
| 28 |
|
simplr |
|- ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> Q O c ) |
| 29 |
10
|
ad4antr |
|- ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) -> Q e. P ) |
| 30 |
29
|
adantr |
|- ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> Q e. P ) |
| 31 |
|
simplr |
|- ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) -> c e. P ) |
| 32 |
31
|
adantr |
|- ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> c e. P ) |
| 33 |
|
simprrr |
|- ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> c O p ) |
| 34 |
1 2 3 8 4 24 13 32 14 33
|
oppcom |
|- ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> p O c ) |
| 35 |
1 3 4 8 13 24 14 30 32 34
|
lnopp2hpgb |
|- ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> ( Q O c <-> p ( ( hpG ` G ) ` D ) Q ) ) |
| 36 |
28 35
|
mpbid |
|- ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> p ( ( hpG ` G ) ` D ) Q ) |
| 37 |
27 36
|
jca |
|- ( ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) /\ ( p e. P /\ ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) ) -> ( D ( perpG ` G ) ( p L A ) /\ p ( ( hpG ` G ) ` D ) Q ) ) |
| 38 |
|
eqid |
|- ( hlG ` G ) = ( hlG ` G ) |
| 39 |
9
|
ad4antr |
|- ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) -> A e. D ) |
| 40 |
|
simpr |
|- ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) -> Q O c ) |
| 41 |
1 2 3 8 4 23 12 29 31 40
|
oppne2 |
|- ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) -> -. c e. D ) |
| 42 |
6
|
ad4antr |
|- ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) -> G TarskiGDim>= 2 ) |
| 43 |
1 2 3 8 4 23 12 38 39 31 41 42
|
oppperpex |
|- ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) -> E. p e. P ( ( A L p ) ( perpG ` G ) D /\ c O p ) ) |
| 44 |
37 43
|
reximddv |
|- ( ( ( ( ( ph /\ d e. D ) /\ A =/= d ) /\ c e. P ) /\ Q O c ) -> E. p e. P ( D ( perpG ` G ) ( p L A ) /\ p ( ( hpG ` G ) ` D ) Q ) ) |
| 45 |
1 3 4 5 7 10 8 11
|
hpgerlem |
|- ( ph -> E. c e. P Q O c ) |
| 46 |
45
|
ad2antrr |
|- ( ( ( ph /\ d e. D ) /\ A =/= d ) -> E. c e. P Q O c ) |
| 47 |
44 46
|
r19.29a |
|- ( ( ( ph /\ d e. D ) /\ A =/= d ) -> E. p e. P ( D ( perpG ` G ) ( p L A ) /\ p ( ( hpG ` G ) ` D ) Q ) ) |
| 48 |
1 3 4 5 7 9
|
tglnpt2 |
|- ( ph -> E. d e. D A =/= d ) |
| 49 |
47 48
|
r19.29a |
|- ( ph -> E. p e. P ( D ( perpG ` G ) ( p L A ) /\ p ( ( hpG ` G ) ` D ) Q ) ) |