Step |
Hyp |
Ref |
Expression |
1 |
|
lnr2i.u |
|- U = ( LIdeal ` R ) |
2 |
|
lnr2i.n |
|- N = ( RSpan ` R ) |
3 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
4 |
3 1 2
|
islnr2 |
|- ( R e. LNoeR <-> ( R e. Ring /\ A. i e. U E. g e. ( ~P ( Base ` R ) i^i Fin ) i = ( N ` g ) ) ) |
5 |
4
|
simprbi |
|- ( R e. LNoeR -> A. i e. U E. g e. ( ~P ( Base ` R ) i^i Fin ) i = ( N ` g ) ) |
6 |
|
eqeq1 |
|- ( i = I -> ( i = ( N ` g ) <-> I = ( N ` g ) ) ) |
7 |
6
|
rexbidv |
|- ( i = I -> ( E. g e. ( ~P ( Base ` R ) i^i Fin ) i = ( N ` g ) <-> E. g e. ( ~P ( Base ` R ) i^i Fin ) I = ( N ` g ) ) ) |
8 |
7
|
rspcva |
|- ( ( I e. U /\ A. i e. U E. g e. ( ~P ( Base ` R ) i^i Fin ) i = ( N ` g ) ) -> E. g e. ( ~P ( Base ` R ) i^i Fin ) I = ( N ` g ) ) |
9 |
5 8
|
sylan2 |
|- ( ( I e. U /\ R e. LNoeR ) -> E. g e. ( ~P ( Base ` R ) i^i Fin ) I = ( N ` g ) ) |
10 |
9
|
ancoms |
|- ( ( R e. LNoeR /\ I e. U ) -> E. g e. ( ~P ( Base ` R ) i^i Fin ) I = ( N ` g ) ) |
11 |
|
lnrring |
|- ( R e. LNoeR -> R e. Ring ) |
12 |
2 3
|
rspssid |
|- ( ( R e. Ring /\ g C_ ( Base ` R ) ) -> g C_ ( N ` g ) ) |
13 |
11 12
|
sylan |
|- ( ( R e. LNoeR /\ g C_ ( Base ` R ) ) -> g C_ ( N ` g ) ) |
14 |
13
|
ex |
|- ( R e. LNoeR -> ( g C_ ( Base ` R ) -> g C_ ( N ` g ) ) ) |
15 |
|
vex |
|- g e. _V |
16 |
15
|
elpw |
|- ( g e. ~P ( Base ` R ) <-> g C_ ( Base ` R ) ) |
17 |
15
|
elpw |
|- ( g e. ~P ( N ` g ) <-> g C_ ( N ` g ) ) |
18 |
14 16 17
|
3imtr4g |
|- ( R e. LNoeR -> ( g e. ~P ( Base ` R ) -> g e. ~P ( N ` g ) ) ) |
19 |
18
|
anim1d |
|- ( R e. LNoeR -> ( ( g e. ~P ( Base ` R ) /\ g e. Fin ) -> ( g e. ~P ( N ` g ) /\ g e. Fin ) ) ) |
20 |
|
elin |
|- ( g e. ( ~P ( Base ` R ) i^i Fin ) <-> ( g e. ~P ( Base ` R ) /\ g e. Fin ) ) |
21 |
|
elin |
|- ( g e. ( ~P ( N ` g ) i^i Fin ) <-> ( g e. ~P ( N ` g ) /\ g e. Fin ) ) |
22 |
19 20 21
|
3imtr4g |
|- ( R e. LNoeR -> ( g e. ( ~P ( Base ` R ) i^i Fin ) -> g e. ( ~P ( N ` g ) i^i Fin ) ) ) |
23 |
|
pweq |
|- ( I = ( N ` g ) -> ~P I = ~P ( N ` g ) ) |
24 |
23
|
ineq1d |
|- ( I = ( N ` g ) -> ( ~P I i^i Fin ) = ( ~P ( N ` g ) i^i Fin ) ) |
25 |
24
|
eleq2d |
|- ( I = ( N ` g ) -> ( g e. ( ~P I i^i Fin ) <-> g e. ( ~P ( N ` g ) i^i Fin ) ) ) |
26 |
25
|
imbi2d |
|- ( I = ( N ` g ) -> ( ( g e. ( ~P ( Base ` R ) i^i Fin ) -> g e. ( ~P I i^i Fin ) ) <-> ( g e. ( ~P ( Base ` R ) i^i Fin ) -> g e. ( ~P ( N ` g ) i^i Fin ) ) ) ) |
27 |
22 26
|
syl5ibrcom |
|- ( R e. LNoeR -> ( I = ( N ` g ) -> ( g e. ( ~P ( Base ` R ) i^i Fin ) -> g e. ( ~P I i^i Fin ) ) ) ) |
28 |
27
|
imdistand |
|- ( R e. LNoeR -> ( ( I = ( N ` g ) /\ g e. ( ~P ( Base ` R ) i^i Fin ) ) -> ( I = ( N ` g ) /\ g e. ( ~P I i^i Fin ) ) ) ) |
29 |
|
ancom |
|- ( ( g e. ( ~P ( Base ` R ) i^i Fin ) /\ I = ( N ` g ) ) <-> ( I = ( N ` g ) /\ g e. ( ~P ( Base ` R ) i^i Fin ) ) ) |
30 |
|
ancom |
|- ( ( g e. ( ~P I i^i Fin ) /\ I = ( N ` g ) ) <-> ( I = ( N ` g ) /\ g e. ( ~P I i^i Fin ) ) ) |
31 |
28 29 30
|
3imtr4g |
|- ( R e. LNoeR -> ( ( g e. ( ~P ( Base ` R ) i^i Fin ) /\ I = ( N ` g ) ) -> ( g e. ( ~P I i^i Fin ) /\ I = ( N ` g ) ) ) ) |
32 |
31
|
reximdv2 |
|- ( R e. LNoeR -> ( E. g e. ( ~P ( Base ` R ) i^i Fin ) I = ( N ` g ) -> E. g e. ( ~P I i^i Fin ) I = ( N ` g ) ) ) |
33 |
32
|
adantr |
|- ( ( R e. LNoeR /\ I e. U ) -> ( E. g e. ( ~P ( Base ` R ) i^i Fin ) I = ( N ` g ) -> E. g e. ( ~P I i^i Fin ) I = ( N ` g ) ) ) |
34 |
10 33
|
mpd |
|- ( ( R e. LNoeR /\ I e. U ) -> E. g e. ( ~P I i^i Fin ) I = ( N ` g ) ) |