Description: A submodule of a finitely generated module over a Noetherian ring is finitely generated. Often taken as the definition of Noetherian ring. (Contributed by Stefan O'Rear, 7-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lnrfg.s | |- S = ( Scalar ` M ) |
|
| lnrfgtr.u | |- U = ( LSubSp ` M ) |
||
| lnrfgtr.n | |- N = ( M |`s P ) |
||
| Assertion | lnrfgtr | |- ( ( M e. LFinGen /\ S e. LNoeR /\ P e. U ) -> N e. LFinGen ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnrfg.s | |- S = ( Scalar ` M ) |
|
| 2 | lnrfgtr.u | |- U = ( LSubSp ` M ) |
|
| 3 | lnrfgtr.n | |- N = ( M |`s P ) |
|
| 4 | 1 | lnrfg | |- ( ( M e. LFinGen /\ S e. LNoeR ) -> M e. LNoeM ) |
| 5 | 2 3 | lnmlssfg | |- ( ( M e. LNoeM /\ P e. U ) -> N e. LFinGen ) |
| 6 | 4 5 | stoic3 | |- ( ( M e. LFinGen /\ S e. LNoeR /\ P e. U ) -> N e. LFinGen ) |