Metamath Proof Explorer


Theorem lo1const

Description: A constant function is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016)

Ref Expression
Assertion lo1const
|- ( ( A C_ RR /\ B e. RR ) -> ( x e. A |-> B ) e. <_O(1) )

Proof

Step Hyp Ref Expression
1 simpl
 |-  ( ( A C_ RR /\ B e. RR ) -> A C_ RR )
2 simplr
 |-  ( ( ( A C_ RR /\ B e. RR ) /\ x e. A ) -> B e. RR )
3 simpr
 |-  ( ( A C_ RR /\ B e. RR ) -> B e. RR )
4 leid
 |-  ( B e. RR -> B <_ B )
5 4 ad2antlr
 |-  ( ( ( A C_ RR /\ B e. RR ) /\ ( x e. A /\ B <_ x ) ) -> B <_ B )
6 1 2 3 3 5 ello1d
 |-  ( ( A C_ RR /\ B e. RR ) -> ( x e. A |-> B ) e. <_O(1) )