Description: A constant function is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lo1const | |- ( ( A C_ RR /\ B e. RR ) -> ( x e. A |-> B ) e. <_O(1) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( A C_ RR /\ B e. RR ) -> A C_ RR ) |
|
| 2 | simplr | |- ( ( ( A C_ RR /\ B e. RR ) /\ x e. A ) -> B e. RR ) |
|
| 3 | simpr | |- ( ( A C_ RR /\ B e. RR ) -> B e. RR ) |
|
| 4 | leid | |- ( B e. RR -> B <_ B ) |
|
| 5 | 4 | ad2antlr | |- ( ( ( A C_ RR /\ B e. RR ) /\ ( x e. A /\ B <_ x ) ) -> B <_ B ) |
| 6 | 1 2 3 3 5 | ello1d | |- ( ( A C_ RR /\ B e. RR ) -> ( x e. A |-> B ) e. <_O(1) ) |