Step |
Hyp |
Ref |
Expression |
1 |
|
lo1eq.1 |
|- ( ( ph /\ x e. A ) -> B e. RR ) |
2 |
|
lo1eq.2 |
|- ( ( ph /\ x e. A ) -> C e. RR ) |
3 |
|
lo1eq.3 |
|- ( ph -> D e. RR ) |
4 |
|
lo1eq.4 |
|- ( ( ph /\ ( x e. A /\ D <_ x ) ) -> B = C ) |
5 |
|
lo1dm |
|- ( ( x e. A |-> B ) e. <_O(1) -> dom ( x e. A |-> B ) C_ RR ) |
6 |
|
eqid |
|- ( x e. A |-> B ) = ( x e. A |-> B ) |
7 |
6 1
|
dmmptd |
|- ( ph -> dom ( x e. A |-> B ) = A ) |
8 |
7
|
sseq1d |
|- ( ph -> ( dom ( x e. A |-> B ) C_ RR <-> A C_ RR ) ) |
9 |
5 8
|
syl5ib |
|- ( ph -> ( ( x e. A |-> B ) e. <_O(1) -> A C_ RR ) ) |
10 |
|
lo1dm |
|- ( ( x e. A |-> C ) e. <_O(1) -> dom ( x e. A |-> C ) C_ RR ) |
11 |
|
eqid |
|- ( x e. A |-> C ) = ( x e. A |-> C ) |
12 |
11 2
|
dmmptd |
|- ( ph -> dom ( x e. A |-> C ) = A ) |
13 |
12
|
sseq1d |
|- ( ph -> ( dom ( x e. A |-> C ) C_ RR <-> A C_ RR ) ) |
14 |
10 13
|
syl5ib |
|- ( ph -> ( ( x e. A |-> C ) e. <_O(1) -> A C_ RR ) ) |
15 |
|
simpr |
|- ( ( ph /\ x e. ( A i^i ( D [,) +oo ) ) ) -> x e. ( A i^i ( D [,) +oo ) ) ) |
16 |
|
elin |
|- ( x e. ( A i^i ( D [,) +oo ) ) <-> ( x e. A /\ x e. ( D [,) +oo ) ) ) |
17 |
15 16
|
sylib |
|- ( ( ph /\ x e. ( A i^i ( D [,) +oo ) ) ) -> ( x e. A /\ x e. ( D [,) +oo ) ) ) |
18 |
17
|
simpld |
|- ( ( ph /\ x e. ( A i^i ( D [,) +oo ) ) ) -> x e. A ) |
19 |
17
|
simprd |
|- ( ( ph /\ x e. ( A i^i ( D [,) +oo ) ) ) -> x e. ( D [,) +oo ) ) |
20 |
|
elicopnf |
|- ( D e. RR -> ( x e. ( D [,) +oo ) <-> ( x e. RR /\ D <_ x ) ) ) |
21 |
3 20
|
syl |
|- ( ph -> ( x e. ( D [,) +oo ) <-> ( x e. RR /\ D <_ x ) ) ) |
22 |
21
|
biimpa |
|- ( ( ph /\ x e. ( D [,) +oo ) ) -> ( x e. RR /\ D <_ x ) ) |
23 |
19 22
|
syldan |
|- ( ( ph /\ x e. ( A i^i ( D [,) +oo ) ) ) -> ( x e. RR /\ D <_ x ) ) |
24 |
23
|
simprd |
|- ( ( ph /\ x e. ( A i^i ( D [,) +oo ) ) ) -> D <_ x ) |
25 |
18 24
|
jca |
|- ( ( ph /\ x e. ( A i^i ( D [,) +oo ) ) ) -> ( x e. A /\ D <_ x ) ) |
26 |
25 4
|
syldan |
|- ( ( ph /\ x e. ( A i^i ( D [,) +oo ) ) ) -> B = C ) |
27 |
26
|
mpteq2dva |
|- ( ph -> ( x e. ( A i^i ( D [,) +oo ) ) |-> B ) = ( x e. ( A i^i ( D [,) +oo ) ) |-> C ) ) |
28 |
|
inss1 |
|- ( A i^i ( D [,) +oo ) ) C_ A |
29 |
|
resmpt |
|- ( ( A i^i ( D [,) +oo ) ) C_ A -> ( ( x e. A |-> B ) |` ( A i^i ( D [,) +oo ) ) ) = ( x e. ( A i^i ( D [,) +oo ) ) |-> B ) ) |
30 |
28 29
|
ax-mp |
|- ( ( x e. A |-> B ) |` ( A i^i ( D [,) +oo ) ) ) = ( x e. ( A i^i ( D [,) +oo ) ) |-> B ) |
31 |
|
resmpt |
|- ( ( A i^i ( D [,) +oo ) ) C_ A -> ( ( x e. A |-> C ) |` ( A i^i ( D [,) +oo ) ) ) = ( x e. ( A i^i ( D [,) +oo ) ) |-> C ) ) |
32 |
28 31
|
ax-mp |
|- ( ( x e. A |-> C ) |` ( A i^i ( D [,) +oo ) ) ) = ( x e. ( A i^i ( D [,) +oo ) ) |-> C ) |
33 |
27 30 32
|
3eqtr4g |
|- ( ph -> ( ( x e. A |-> B ) |` ( A i^i ( D [,) +oo ) ) ) = ( ( x e. A |-> C ) |` ( A i^i ( D [,) +oo ) ) ) ) |
34 |
|
resres |
|- ( ( ( x e. A |-> B ) |` A ) |` ( D [,) +oo ) ) = ( ( x e. A |-> B ) |` ( A i^i ( D [,) +oo ) ) ) |
35 |
|
resres |
|- ( ( ( x e. A |-> C ) |` A ) |` ( D [,) +oo ) ) = ( ( x e. A |-> C ) |` ( A i^i ( D [,) +oo ) ) ) |
36 |
33 34 35
|
3eqtr4g |
|- ( ph -> ( ( ( x e. A |-> B ) |` A ) |` ( D [,) +oo ) ) = ( ( ( x e. A |-> C ) |` A ) |` ( D [,) +oo ) ) ) |
37 |
|
ssid |
|- A C_ A |
38 |
|
resmpt |
|- ( A C_ A -> ( ( x e. A |-> B ) |` A ) = ( x e. A |-> B ) ) |
39 |
|
reseq1 |
|- ( ( ( x e. A |-> B ) |` A ) = ( x e. A |-> B ) -> ( ( ( x e. A |-> B ) |` A ) |` ( D [,) +oo ) ) = ( ( x e. A |-> B ) |` ( D [,) +oo ) ) ) |
40 |
37 38 39
|
mp2b |
|- ( ( ( x e. A |-> B ) |` A ) |` ( D [,) +oo ) ) = ( ( x e. A |-> B ) |` ( D [,) +oo ) ) |
41 |
|
resmpt |
|- ( A C_ A -> ( ( x e. A |-> C ) |` A ) = ( x e. A |-> C ) ) |
42 |
|
reseq1 |
|- ( ( ( x e. A |-> C ) |` A ) = ( x e. A |-> C ) -> ( ( ( x e. A |-> C ) |` A ) |` ( D [,) +oo ) ) = ( ( x e. A |-> C ) |` ( D [,) +oo ) ) ) |
43 |
37 41 42
|
mp2b |
|- ( ( ( x e. A |-> C ) |` A ) |` ( D [,) +oo ) ) = ( ( x e. A |-> C ) |` ( D [,) +oo ) ) |
44 |
36 40 43
|
3eqtr3g |
|- ( ph -> ( ( x e. A |-> B ) |` ( D [,) +oo ) ) = ( ( x e. A |-> C ) |` ( D [,) +oo ) ) ) |
45 |
44
|
eleq1d |
|- ( ph -> ( ( ( x e. A |-> B ) |` ( D [,) +oo ) ) e. <_O(1) <-> ( ( x e. A |-> C ) |` ( D [,) +oo ) ) e. <_O(1) ) ) |
46 |
45
|
adantr |
|- ( ( ph /\ A C_ RR ) -> ( ( ( x e. A |-> B ) |` ( D [,) +oo ) ) e. <_O(1) <-> ( ( x e. A |-> C ) |` ( D [,) +oo ) ) e. <_O(1) ) ) |
47 |
1
|
fmpttd |
|- ( ph -> ( x e. A |-> B ) : A --> RR ) |
48 |
47
|
adantr |
|- ( ( ph /\ A C_ RR ) -> ( x e. A |-> B ) : A --> RR ) |
49 |
|
simpr |
|- ( ( ph /\ A C_ RR ) -> A C_ RR ) |
50 |
3
|
adantr |
|- ( ( ph /\ A C_ RR ) -> D e. RR ) |
51 |
48 49 50
|
lo1resb |
|- ( ( ph /\ A C_ RR ) -> ( ( x e. A |-> B ) e. <_O(1) <-> ( ( x e. A |-> B ) |` ( D [,) +oo ) ) e. <_O(1) ) ) |
52 |
2
|
fmpttd |
|- ( ph -> ( x e. A |-> C ) : A --> RR ) |
53 |
52
|
adantr |
|- ( ( ph /\ A C_ RR ) -> ( x e. A |-> C ) : A --> RR ) |
54 |
53 49 50
|
lo1resb |
|- ( ( ph /\ A C_ RR ) -> ( ( x e. A |-> C ) e. <_O(1) <-> ( ( x e. A |-> C ) |` ( D [,) +oo ) ) e. <_O(1) ) ) |
55 |
46 51 54
|
3bitr4d |
|- ( ( ph /\ A C_ RR ) -> ( ( x e. A |-> B ) e. <_O(1) <-> ( x e. A |-> C ) e. <_O(1) ) ) |
56 |
55
|
ex |
|- ( ph -> ( A C_ RR -> ( ( x e. A |-> B ) e. <_O(1) <-> ( x e. A |-> C ) e. <_O(1) ) ) ) |
57 |
9 14 56
|
pm5.21ndd |
|- ( ph -> ( ( x e. A |-> B ) e. <_O(1) <-> ( x e. A |-> C ) e. <_O(1) ) ) |