| Step | Hyp | Ref | Expression | 
						
							| 1 |  | o1add2.1 |  |-  ( ( ph /\ x e. A ) -> B e. V ) | 
						
							| 2 |  | o1add2.2 |  |-  ( ( ph /\ x e. A ) -> C e. V ) | 
						
							| 3 |  | lo1add.3 |  |-  ( ph -> ( x e. A |-> B ) e. <_O(1) ) | 
						
							| 4 |  | lo1add.4 |  |-  ( ph -> ( x e. A |-> C ) e. <_O(1) ) | 
						
							| 5 |  | lo1mul.5 |  |-  ( ( ph /\ x e. A ) -> 0 <_ B ) | 
						
							| 6 | 2 4 | lo1mptrcl |  |-  ( ( ph /\ x e. A ) -> C e. RR ) | 
						
							| 7 | 6 | recnd |  |-  ( ( ph /\ x e. A ) -> C e. CC ) | 
						
							| 8 | 1 3 | lo1mptrcl |  |-  ( ( ph /\ x e. A ) -> B e. RR ) | 
						
							| 9 | 8 | recnd |  |-  ( ( ph /\ x e. A ) -> B e. CC ) | 
						
							| 10 | 7 9 | mulcomd |  |-  ( ( ph /\ x e. A ) -> ( C x. B ) = ( B x. C ) ) | 
						
							| 11 | 10 | mpteq2dva |  |-  ( ph -> ( x e. A |-> ( C x. B ) ) = ( x e. A |-> ( B x. C ) ) ) | 
						
							| 12 | 1 2 3 4 5 | lo1mul |  |-  ( ph -> ( x e. A |-> ( B x. C ) ) e. <_O(1) ) | 
						
							| 13 | 11 12 | eqeltrd |  |-  ( ph -> ( x e. A |-> ( C x. B ) ) e. <_O(1) ) |