| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simprl |
|- ( ( Locally A = A /\ ( j e. A /\ x e. j ) ) -> j e. A ) |
| 2 |
|
simpl |
|- ( ( Locally A = A /\ ( j e. A /\ x e. j ) ) -> Locally A = A ) |
| 3 |
1 2
|
eleqtrrd |
|- ( ( Locally A = A /\ ( j e. A /\ x e. j ) ) -> j e. Locally A ) |
| 4 |
|
simprr |
|- ( ( Locally A = A /\ ( j e. A /\ x e. j ) ) -> x e. j ) |
| 5 |
|
llyrest |
|- ( ( j e. Locally A /\ x e. j ) -> ( j |`t x ) e. Locally A ) |
| 6 |
3 4 5
|
syl2anc |
|- ( ( Locally A = A /\ ( j e. A /\ x e. j ) ) -> ( j |`t x ) e. Locally A ) |
| 7 |
6 2
|
eleqtrd |
|- ( ( Locally A = A /\ ( j e. A /\ x e. j ) ) -> ( j |`t x ) e. A ) |
| 8 |
7
|
restnlly |
|- ( Locally A = A -> N-Locally A = Locally A ) |
| 9 |
|
id |
|- ( Locally A = A -> Locally A = A ) |
| 10 |
8 9
|
eqtrd |
|- ( Locally A = A -> N-Locally A = A ) |
| 11 |
|
simprl |
|- ( ( N-Locally A = A /\ ( j e. A /\ x e. j ) ) -> j e. A ) |
| 12 |
|
simpl |
|- ( ( N-Locally A = A /\ ( j e. A /\ x e. j ) ) -> N-Locally A = A ) |
| 13 |
11 12
|
eleqtrrd |
|- ( ( N-Locally A = A /\ ( j e. A /\ x e. j ) ) -> j e. N-Locally A ) |
| 14 |
|
simprr |
|- ( ( N-Locally A = A /\ ( j e. A /\ x e. j ) ) -> x e. j ) |
| 15 |
|
nllyrest |
|- ( ( j e. N-Locally A /\ x e. j ) -> ( j |`t x ) e. N-Locally A ) |
| 16 |
13 14 15
|
syl2anc |
|- ( ( N-Locally A = A /\ ( j e. A /\ x e. j ) ) -> ( j |`t x ) e. N-Locally A ) |
| 17 |
16 12
|
eleqtrd |
|- ( ( N-Locally A = A /\ ( j e. A /\ x e. j ) ) -> ( j |`t x ) e. A ) |
| 18 |
17
|
restnlly |
|- ( N-Locally A = A -> N-Locally A = Locally A ) |
| 19 |
|
id |
|- ( N-Locally A = A -> N-Locally A = A ) |
| 20 |
18 19
|
eqtr3d |
|- ( N-Locally A = A -> Locally A = A ) |
| 21 |
10 20
|
impbii |
|- ( Locally A = A <-> N-Locally A = A ) |