Step |
Hyp |
Ref |
Expression |
1 |
|
simprl |
|- ( ( Locally A = A /\ ( j e. A /\ x e. j ) ) -> j e. A ) |
2 |
|
simpl |
|- ( ( Locally A = A /\ ( j e. A /\ x e. j ) ) -> Locally A = A ) |
3 |
1 2
|
eleqtrrd |
|- ( ( Locally A = A /\ ( j e. A /\ x e. j ) ) -> j e. Locally A ) |
4 |
|
simprr |
|- ( ( Locally A = A /\ ( j e. A /\ x e. j ) ) -> x e. j ) |
5 |
|
llyrest |
|- ( ( j e. Locally A /\ x e. j ) -> ( j |`t x ) e. Locally A ) |
6 |
3 4 5
|
syl2anc |
|- ( ( Locally A = A /\ ( j e. A /\ x e. j ) ) -> ( j |`t x ) e. Locally A ) |
7 |
6 2
|
eleqtrd |
|- ( ( Locally A = A /\ ( j e. A /\ x e. j ) ) -> ( j |`t x ) e. A ) |
8 |
7
|
restnlly |
|- ( Locally A = A -> N-Locally A = Locally A ) |
9 |
|
id |
|- ( Locally A = A -> Locally A = A ) |
10 |
8 9
|
eqtrd |
|- ( Locally A = A -> N-Locally A = A ) |
11 |
|
simprl |
|- ( ( N-Locally A = A /\ ( j e. A /\ x e. j ) ) -> j e. A ) |
12 |
|
simpl |
|- ( ( N-Locally A = A /\ ( j e. A /\ x e. j ) ) -> N-Locally A = A ) |
13 |
11 12
|
eleqtrrd |
|- ( ( N-Locally A = A /\ ( j e. A /\ x e. j ) ) -> j e. N-Locally A ) |
14 |
|
simprr |
|- ( ( N-Locally A = A /\ ( j e. A /\ x e. j ) ) -> x e. j ) |
15 |
|
nllyrest |
|- ( ( j e. N-Locally A /\ x e. j ) -> ( j |`t x ) e. N-Locally A ) |
16 |
13 14 15
|
syl2anc |
|- ( ( N-Locally A = A /\ ( j e. A /\ x e. j ) ) -> ( j |`t x ) e. N-Locally A ) |
17 |
16 12
|
eleqtrd |
|- ( ( N-Locally A = A /\ ( j e. A /\ x e. j ) ) -> ( j |`t x ) e. A ) |
18 |
17
|
restnlly |
|- ( N-Locally A = A -> N-Locally A = Locally A ) |
19 |
|
id |
|- ( N-Locally A = A -> N-Locally A = A ) |
20 |
18 19
|
eqtr3d |
|- ( N-Locally A = A -> Locally A = A ) |
21 |
10 20
|
impbii |
|- ( Locally A = A <-> N-Locally A = A ) |