Description: The natural logarithm of 1 . One case of Property 1a of Cohen p. 301. (Contributed by Steve Rodriguez, 25-Nov-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | log1 | |- ( log ` 1 ) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ef0 | |- ( exp ` 0 ) = 1 |
|
2 | 1rp | |- 1 e. RR+ |
|
3 | 0re | |- 0 e. RR |
|
4 | relogeftb | |- ( ( 1 e. RR+ /\ 0 e. RR ) -> ( ( log ` 1 ) = 0 <-> ( exp ` 0 ) = 1 ) ) |
|
5 | 2 3 4 | mp2an | |- ( ( log ` 1 ) = 0 <-> ( exp ` 0 ) = 1 ) |
6 | 1 5 | mpbir | |- ( log ` 1 ) = 0 |