Step |
Hyp |
Ref |
Expression |
1 |
|
log2cnv.1 |
|- F = ( n e. NN0 |-> ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) |
2 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
3 |
|
0zd |
|- ( T. -> 0 e. ZZ ) |
4 |
|
2cn |
|- 2 e. CC |
5 |
|
ax-icn |
|- _i e. CC |
6 |
|
ine0 |
|- _i =/= 0 |
7 |
4 5 6
|
divcli |
|- ( 2 / _i ) e. CC |
8 |
7
|
a1i |
|- ( T. -> ( 2 / _i ) e. CC ) |
9 |
|
3cn |
|- 3 e. CC |
10 |
|
3ne0 |
|- 3 =/= 0 |
11 |
5 9 10
|
divcli |
|- ( _i / 3 ) e. CC |
12 |
|
absdiv |
|- ( ( _i e. CC /\ 3 e. CC /\ 3 =/= 0 ) -> ( abs ` ( _i / 3 ) ) = ( ( abs ` _i ) / ( abs ` 3 ) ) ) |
13 |
5 9 10 12
|
mp3an |
|- ( abs ` ( _i / 3 ) ) = ( ( abs ` _i ) / ( abs ` 3 ) ) |
14 |
|
absi |
|- ( abs ` _i ) = 1 |
15 |
|
3re |
|- 3 e. RR |
16 |
|
0re |
|- 0 e. RR |
17 |
|
3pos |
|- 0 < 3 |
18 |
16 15 17
|
ltleii |
|- 0 <_ 3 |
19 |
|
absid |
|- ( ( 3 e. RR /\ 0 <_ 3 ) -> ( abs ` 3 ) = 3 ) |
20 |
15 18 19
|
mp2an |
|- ( abs ` 3 ) = 3 |
21 |
14 20
|
oveq12i |
|- ( ( abs ` _i ) / ( abs ` 3 ) ) = ( 1 / 3 ) |
22 |
13 21
|
eqtri |
|- ( abs ` ( _i / 3 ) ) = ( 1 / 3 ) |
23 |
|
1lt3 |
|- 1 < 3 |
24 |
|
recgt1 |
|- ( ( 3 e. RR /\ 0 < 3 ) -> ( 1 < 3 <-> ( 1 / 3 ) < 1 ) ) |
25 |
15 17 24
|
mp2an |
|- ( 1 < 3 <-> ( 1 / 3 ) < 1 ) |
26 |
23 25
|
mpbi |
|- ( 1 / 3 ) < 1 |
27 |
22 26
|
eqbrtri |
|- ( abs ` ( _i / 3 ) ) < 1 |
28 |
|
eqid |
|- ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) = ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) |
29 |
28
|
atantayl3 |
|- ( ( ( _i / 3 ) e. CC /\ ( abs ` ( _i / 3 ) ) < 1 ) -> seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ) ~~> ( arctan ` ( _i / 3 ) ) ) |
30 |
11 27 29
|
mp2an |
|- seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ) ~~> ( arctan ` ( _i / 3 ) ) |
31 |
30
|
a1i |
|- ( T. -> seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ) ~~> ( arctan ` ( _i / 3 ) ) ) |
32 |
|
oveq2 |
|- ( n = k -> ( -u 1 ^ n ) = ( -u 1 ^ k ) ) |
33 |
|
oveq2 |
|- ( n = k -> ( 2 x. n ) = ( 2 x. k ) ) |
34 |
33
|
oveq1d |
|- ( n = k -> ( ( 2 x. n ) + 1 ) = ( ( 2 x. k ) + 1 ) ) |
35 |
34
|
oveq2d |
|- ( n = k -> ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) = ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) ) |
36 |
35 34
|
oveq12d |
|- ( n = k -> ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) = ( ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) |
37 |
32 36
|
oveq12d |
|- ( n = k -> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) = ( ( -u 1 ^ k ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) ) |
38 |
|
ovex |
|- ( ( -u 1 ^ k ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) e. _V |
39 |
37 28 38
|
fvmpt |
|- ( k e. NN0 -> ( ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ` k ) = ( ( -u 1 ^ k ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) ) |
40 |
5
|
a1i |
|- ( k e. NN0 -> _i e. CC ) |
41 |
9
|
a1i |
|- ( k e. NN0 -> 3 e. CC ) |
42 |
10
|
a1i |
|- ( k e. NN0 -> 3 =/= 0 ) |
43 |
|
2nn0 |
|- 2 e. NN0 |
44 |
|
nn0mulcl |
|- ( ( 2 e. NN0 /\ k e. NN0 ) -> ( 2 x. k ) e. NN0 ) |
45 |
43 44
|
mpan |
|- ( k e. NN0 -> ( 2 x. k ) e. NN0 ) |
46 |
|
peano2nn0 |
|- ( ( 2 x. k ) e. NN0 -> ( ( 2 x. k ) + 1 ) e. NN0 ) |
47 |
45 46
|
syl |
|- ( k e. NN0 -> ( ( 2 x. k ) + 1 ) e. NN0 ) |
48 |
40 41 42 47
|
expdivd |
|- ( k e. NN0 -> ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) = ( ( _i ^ ( ( 2 x. k ) + 1 ) ) / ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) ) |
49 |
48
|
oveq2d |
|- ( k e. NN0 -> ( ( -u 1 ^ k ) x. ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) ) = ( ( -u 1 ^ k ) x. ( ( _i ^ ( ( 2 x. k ) + 1 ) ) / ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) ) ) |
50 |
|
neg1cn |
|- -u 1 e. CC |
51 |
|
expcl |
|- ( ( -u 1 e. CC /\ k e. NN0 ) -> ( -u 1 ^ k ) e. CC ) |
52 |
50 51
|
mpan |
|- ( k e. NN0 -> ( -u 1 ^ k ) e. CC ) |
53 |
|
expcl |
|- ( ( _i e. CC /\ ( ( 2 x. k ) + 1 ) e. NN0 ) -> ( _i ^ ( ( 2 x. k ) + 1 ) ) e. CC ) |
54 |
5 47 53
|
sylancr |
|- ( k e. NN0 -> ( _i ^ ( ( 2 x. k ) + 1 ) ) e. CC ) |
55 |
|
3nn |
|- 3 e. NN |
56 |
|
nnexpcl |
|- ( ( 3 e. NN /\ ( ( 2 x. k ) + 1 ) e. NN0 ) -> ( 3 ^ ( ( 2 x. k ) + 1 ) ) e. NN ) |
57 |
55 47 56
|
sylancr |
|- ( k e. NN0 -> ( 3 ^ ( ( 2 x. k ) + 1 ) ) e. NN ) |
58 |
57
|
nncnd |
|- ( k e. NN0 -> ( 3 ^ ( ( 2 x. k ) + 1 ) ) e. CC ) |
59 |
57
|
nnne0d |
|- ( k e. NN0 -> ( 3 ^ ( ( 2 x. k ) + 1 ) ) =/= 0 ) |
60 |
52 54 58 59
|
divassd |
|- ( k e. NN0 -> ( ( ( -u 1 ^ k ) x. ( _i ^ ( ( 2 x. k ) + 1 ) ) ) / ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) = ( ( -u 1 ^ k ) x. ( ( _i ^ ( ( 2 x. k ) + 1 ) ) / ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) ) ) |
61 |
|
expp1 |
|- ( ( _i e. CC /\ ( 2 x. k ) e. NN0 ) -> ( _i ^ ( ( 2 x. k ) + 1 ) ) = ( ( _i ^ ( 2 x. k ) ) x. _i ) ) |
62 |
5 45 61
|
sylancr |
|- ( k e. NN0 -> ( _i ^ ( ( 2 x. k ) + 1 ) ) = ( ( _i ^ ( 2 x. k ) ) x. _i ) ) |
63 |
|
expmul |
|- ( ( _i e. CC /\ 2 e. NN0 /\ k e. NN0 ) -> ( _i ^ ( 2 x. k ) ) = ( ( _i ^ 2 ) ^ k ) ) |
64 |
5 43 63
|
mp3an12 |
|- ( k e. NN0 -> ( _i ^ ( 2 x. k ) ) = ( ( _i ^ 2 ) ^ k ) ) |
65 |
|
i2 |
|- ( _i ^ 2 ) = -u 1 |
66 |
65
|
oveq1i |
|- ( ( _i ^ 2 ) ^ k ) = ( -u 1 ^ k ) |
67 |
64 66
|
eqtrdi |
|- ( k e. NN0 -> ( _i ^ ( 2 x. k ) ) = ( -u 1 ^ k ) ) |
68 |
67
|
oveq1d |
|- ( k e. NN0 -> ( ( _i ^ ( 2 x. k ) ) x. _i ) = ( ( -u 1 ^ k ) x. _i ) ) |
69 |
62 68
|
eqtrd |
|- ( k e. NN0 -> ( _i ^ ( ( 2 x. k ) + 1 ) ) = ( ( -u 1 ^ k ) x. _i ) ) |
70 |
69
|
oveq2d |
|- ( k e. NN0 -> ( ( -u 1 ^ k ) x. ( _i ^ ( ( 2 x. k ) + 1 ) ) ) = ( ( -u 1 ^ k ) x. ( ( -u 1 ^ k ) x. _i ) ) ) |
71 |
52 52 40
|
mulassd |
|- ( k e. NN0 -> ( ( ( -u 1 ^ k ) x. ( -u 1 ^ k ) ) x. _i ) = ( ( -u 1 ^ k ) x. ( ( -u 1 ^ k ) x. _i ) ) ) |
72 |
50
|
a1i |
|- ( k e. NN0 -> -u 1 e. CC ) |
73 |
|
id |
|- ( k e. NN0 -> k e. NN0 ) |
74 |
72 73 73
|
expaddd |
|- ( k e. NN0 -> ( -u 1 ^ ( k + k ) ) = ( ( -u 1 ^ k ) x. ( -u 1 ^ k ) ) ) |
75 |
|
expmul |
|- ( ( -u 1 e. CC /\ 2 e. NN0 /\ k e. NN0 ) -> ( -u 1 ^ ( 2 x. k ) ) = ( ( -u 1 ^ 2 ) ^ k ) ) |
76 |
50 43 75
|
mp3an12 |
|- ( k e. NN0 -> ( -u 1 ^ ( 2 x. k ) ) = ( ( -u 1 ^ 2 ) ^ k ) ) |
77 |
|
neg1sqe1 |
|- ( -u 1 ^ 2 ) = 1 |
78 |
77
|
oveq1i |
|- ( ( -u 1 ^ 2 ) ^ k ) = ( 1 ^ k ) |
79 |
76 78
|
eqtrdi |
|- ( k e. NN0 -> ( -u 1 ^ ( 2 x. k ) ) = ( 1 ^ k ) ) |
80 |
|
nn0cn |
|- ( k e. NN0 -> k e. CC ) |
81 |
80
|
2timesd |
|- ( k e. NN0 -> ( 2 x. k ) = ( k + k ) ) |
82 |
81
|
oveq2d |
|- ( k e. NN0 -> ( -u 1 ^ ( 2 x. k ) ) = ( -u 1 ^ ( k + k ) ) ) |
83 |
|
nn0z |
|- ( k e. NN0 -> k e. ZZ ) |
84 |
|
1exp |
|- ( k e. ZZ -> ( 1 ^ k ) = 1 ) |
85 |
83 84
|
syl |
|- ( k e. NN0 -> ( 1 ^ k ) = 1 ) |
86 |
79 82 85
|
3eqtr3d |
|- ( k e. NN0 -> ( -u 1 ^ ( k + k ) ) = 1 ) |
87 |
74 86
|
eqtr3d |
|- ( k e. NN0 -> ( ( -u 1 ^ k ) x. ( -u 1 ^ k ) ) = 1 ) |
88 |
87
|
oveq1d |
|- ( k e. NN0 -> ( ( ( -u 1 ^ k ) x. ( -u 1 ^ k ) ) x. _i ) = ( 1 x. _i ) ) |
89 |
5
|
mulid2i |
|- ( 1 x. _i ) = _i |
90 |
88 89
|
eqtrdi |
|- ( k e. NN0 -> ( ( ( -u 1 ^ k ) x. ( -u 1 ^ k ) ) x. _i ) = _i ) |
91 |
70 71 90
|
3eqtr2d |
|- ( k e. NN0 -> ( ( -u 1 ^ k ) x. ( _i ^ ( ( 2 x. k ) + 1 ) ) ) = _i ) |
92 |
91
|
oveq1d |
|- ( k e. NN0 -> ( ( ( -u 1 ^ k ) x. ( _i ^ ( ( 2 x. k ) + 1 ) ) ) / ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) = ( _i / ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) ) |
93 |
49 60 92
|
3eqtr2d |
|- ( k e. NN0 -> ( ( -u 1 ^ k ) x. ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) ) = ( _i / ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) ) |
94 |
93
|
oveq1d |
|- ( k e. NN0 -> ( ( ( -u 1 ^ k ) x. ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) ) / ( ( 2 x. k ) + 1 ) ) = ( ( _i / ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) / ( ( 2 x. k ) + 1 ) ) ) |
95 |
|
expcl |
|- ( ( ( _i / 3 ) e. CC /\ ( ( 2 x. k ) + 1 ) e. NN0 ) -> ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) e. CC ) |
96 |
11 47 95
|
sylancr |
|- ( k e. NN0 -> ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) e. CC ) |
97 |
|
nn0p1nn |
|- ( ( 2 x. k ) e. NN0 -> ( ( 2 x. k ) + 1 ) e. NN ) |
98 |
45 97
|
syl |
|- ( k e. NN0 -> ( ( 2 x. k ) + 1 ) e. NN ) |
99 |
98
|
nncnd |
|- ( k e. NN0 -> ( ( 2 x. k ) + 1 ) e. CC ) |
100 |
98
|
nnne0d |
|- ( k e. NN0 -> ( ( 2 x. k ) + 1 ) =/= 0 ) |
101 |
52 96 99 100
|
divassd |
|- ( k e. NN0 -> ( ( ( -u 1 ^ k ) x. ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) ) / ( ( 2 x. k ) + 1 ) ) = ( ( -u 1 ^ k ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) ) |
102 |
40 58 99 59 100
|
divdiv1d |
|- ( k e. NN0 -> ( ( _i / ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) / ( ( 2 x. k ) + 1 ) ) = ( _i / ( ( 3 ^ ( ( 2 x. k ) + 1 ) ) x. ( ( 2 x. k ) + 1 ) ) ) ) |
103 |
94 101 102
|
3eqtr3d |
|- ( k e. NN0 -> ( ( -u 1 ^ k ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) = ( _i / ( ( 3 ^ ( ( 2 x. k ) + 1 ) ) x. ( ( 2 x. k ) + 1 ) ) ) ) |
104 |
58 99
|
mulcomd |
|- ( k e. NN0 -> ( ( 3 ^ ( ( 2 x. k ) + 1 ) ) x. ( ( 2 x. k ) + 1 ) ) = ( ( ( 2 x. k ) + 1 ) x. ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) ) |
105 |
104
|
oveq2d |
|- ( k e. NN0 -> ( _i / ( ( 3 ^ ( ( 2 x. k ) + 1 ) ) x. ( ( 2 x. k ) + 1 ) ) ) = ( _i / ( ( ( 2 x. k ) + 1 ) x. ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) ) ) |
106 |
39 103 105
|
3eqtrd |
|- ( k e. NN0 -> ( ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ` k ) = ( _i / ( ( ( 2 x. k ) + 1 ) x. ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) ) ) |
107 |
98 57
|
nnmulcld |
|- ( k e. NN0 -> ( ( ( 2 x. k ) + 1 ) x. ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) e. NN ) |
108 |
107
|
nncnd |
|- ( k e. NN0 -> ( ( ( 2 x. k ) + 1 ) x. ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) e. CC ) |
109 |
107
|
nnne0d |
|- ( k e. NN0 -> ( ( ( 2 x. k ) + 1 ) x. ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) =/= 0 ) |
110 |
40 108 109
|
divcld |
|- ( k e. NN0 -> ( _i / ( ( ( 2 x. k ) + 1 ) x. ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) ) e. CC ) |
111 |
106 110
|
eqeltrd |
|- ( k e. NN0 -> ( ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ` k ) e. CC ) |
112 |
111
|
adantl |
|- ( ( T. /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ` k ) e. CC ) |
113 |
34
|
oveq2d |
|- ( n = k -> ( 3 x. ( ( 2 x. n ) + 1 ) ) = ( 3 x. ( ( 2 x. k ) + 1 ) ) ) |
114 |
|
oveq2 |
|- ( n = k -> ( 9 ^ n ) = ( 9 ^ k ) ) |
115 |
113 114
|
oveq12d |
|- ( n = k -> ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) = ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) |
116 |
115
|
oveq2d |
|- ( n = k -> ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) = ( 2 / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) |
117 |
|
ovex |
|- ( 2 / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) e. _V |
118 |
116 1 117
|
fvmpt |
|- ( k e. NN0 -> ( F ` k ) = ( 2 / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) |
119 |
|
expp1 |
|- ( ( 3 e. CC /\ ( 2 x. k ) e. NN0 ) -> ( 3 ^ ( ( 2 x. k ) + 1 ) ) = ( ( 3 ^ ( 2 x. k ) ) x. 3 ) ) |
120 |
9 45 119
|
sylancr |
|- ( k e. NN0 -> ( 3 ^ ( ( 2 x. k ) + 1 ) ) = ( ( 3 ^ ( 2 x. k ) ) x. 3 ) ) |
121 |
|
expmul |
|- ( ( 3 e. CC /\ 2 e. NN0 /\ k e. NN0 ) -> ( 3 ^ ( 2 x. k ) ) = ( ( 3 ^ 2 ) ^ k ) ) |
122 |
9 43 121
|
mp3an12 |
|- ( k e. NN0 -> ( 3 ^ ( 2 x. k ) ) = ( ( 3 ^ 2 ) ^ k ) ) |
123 |
|
sq3 |
|- ( 3 ^ 2 ) = 9 |
124 |
123
|
oveq1i |
|- ( ( 3 ^ 2 ) ^ k ) = ( 9 ^ k ) |
125 |
122 124
|
eqtrdi |
|- ( k e. NN0 -> ( 3 ^ ( 2 x. k ) ) = ( 9 ^ k ) ) |
126 |
125
|
oveq1d |
|- ( k e. NN0 -> ( ( 3 ^ ( 2 x. k ) ) x. 3 ) = ( ( 9 ^ k ) x. 3 ) ) |
127 |
|
9nn |
|- 9 e. NN |
128 |
|
nnexpcl |
|- ( ( 9 e. NN /\ k e. NN0 ) -> ( 9 ^ k ) e. NN ) |
129 |
127 128
|
mpan |
|- ( k e. NN0 -> ( 9 ^ k ) e. NN ) |
130 |
129
|
nncnd |
|- ( k e. NN0 -> ( 9 ^ k ) e. CC ) |
131 |
|
mulcom |
|- ( ( ( 9 ^ k ) e. CC /\ 3 e. CC ) -> ( ( 9 ^ k ) x. 3 ) = ( 3 x. ( 9 ^ k ) ) ) |
132 |
130 9 131
|
sylancl |
|- ( k e. NN0 -> ( ( 9 ^ k ) x. 3 ) = ( 3 x. ( 9 ^ k ) ) ) |
133 |
120 126 132
|
3eqtrd |
|- ( k e. NN0 -> ( 3 ^ ( ( 2 x. k ) + 1 ) ) = ( 3 x. ( 9 ^ k ) ) ) |
134 |
91 133
|
oveq12d |
|- ( k e. NN0 -> ( ( ( -u 1 ^ k ) x. ( _i ^ ( ( 2 x. k ) + 1 ) ) ) / ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) = ( _i / ( 3 x. ( 9 ^ k ) ) ) ) |
135 |
49 60 134
|
3eqtr2d |
|- ( k e. NN0 -> ( ( -u 1 ^ k ) x. ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) ) = ( _i / ( 3 x. ( 9 ^ k ) ) ) ) |
136 |
135
|
oveq1d |
|- ( k e. NN0 -> ( ( ( -u 1 ^ k ) x. ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) ) / ( ( 2 x. k ) + 1 ) ) = ( ( _i / ( 3 x. ( 9 ^ k ) ) ) / ( ( 2 x. k ) + 1 ) ) ) |
137 |
|
nnmulcl |
|- ( ( 3 e. NN /\ ( 9 ^ k ) e. NN ) -> ( 3 x. ( 9 ^ k ) ) e. NN ) |
138 |
55 129 137
|
sylancr |
|- ( k e. NN0 -> ( 3 x. ( 9 ^ k ) ) e. NN ) |
139 |
138
|
nncnd |
|- ( k e. NN0 -> ( 3 x. ( 9 ^ k ) ) e. CC ) |
140 |
138
|
nnne0d |
|- ( k e. NN0 -> ( 3 x. ( 9 ^ k ) ) =/= 0 ) |
141 |
40 139 99 140 100
|
divdiv1d |
|- ( k e. NN0 -> ( ( _i / ( 3 x. ( 9 ^ k ) ) ) / ( ( 2 x. k ) + 1 ) ) = ( _i / ( ( 3 x. ( 9 ^ k ) ) x. ( ( 2 x. k ) + 1 ) ) ) ) |
142 |
136 101 141
|
3eqtr3d |
|- ( k e. NN0 -> ( ( -u 1 ^ k ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) = ( _i / ( ( 3 x. ( 9 ^ k ) ) x. ( ( 2 x. k ) + 1 ) ) ) ) |
143 |
41 130 99
|
mul32d |
|- ( k e. NN0 -> ( ( 3 x. ( 9 ^ k ) ) x. ( ( 2 x. k ) + 1 ) ) = ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) |
144 |
143
|
oveq2d |
|- ( k e. NN0 -> ( _i / ( ( 3 x. ( 9 ^ k ) ) x. ( ( 2 x. k ) + 1 ) ) ) = ( _i / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) |
145 |
39 142 144
|
3eqtrd |
|- ( k e. NN0 -> ( ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ` k ) = ( _i / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) |
146 |
145
|
oveq2d |
|- ( k e. NN0 -> ( ( 2 / _i ) x. ( ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ` k ) ) = ( ( 2 / _i ) x. ( _i / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) ) |
147 |
|
nnmulcl |
|- ( ( 3 e. NN /\ ( ( 2 x. k ) + 1 ) e. NN ) -> ( 3 x. ( ( 2 x. k ) + 1 ) ) e. NN ) |
148 |
55 98 147
|
sylancr |
|- ( k e. NN0 -> ( 3 x. ( ( 2 x. k ) + 1 ) ) e. NN ) |
149 |
148 129
|
nnmulcld |
|- ( k e. NN0 -> ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) e. NN ) |
150 |
149
|
nncnd |
|- ( k e. NN0 -> ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) e. CC ) |
151 |
149
|
nnne0d |
|- ( k e. NN0 -> ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) =/= 0 ) |
152 |
40 150 151
|
divcld |
|- ( k e. NN0 -> ( _i / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) e. CC ) |
153 |
|
mulcom |
|- ( ( ( _i / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) e. CC /\ ( 2 / _i ) e. CC ) -> ( ( _i / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) x. ( 2 / _i ) ) = ( ( 2 / _i ) x. ( _i / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) ) |
154 |
152 7 153
|
sylancl |
|- ( k e. NN0 -> ( ( _i / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) x. ( 2 / _i ) ) = ( ( 2 / _i ) x. ( _i / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) ) |
155 |
4
|
a1i |
|- ( k e. NN0 -> 2 e. CC ) |
156 |
6
|
a1i |
|- ( k e. NN0 -> _i =/= 0 ) |
157 |
155 40 150 156 151
|
dmdcand |
|- ( k e. NN0 -> ( ( _i / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) x. ( 2 / _i ) ) = ( 2 / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) |
158 |
146 154 157
|
3eqtr2d |
|- ( k e. NN0 -> ( ( 2 / _i ) x. ( ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ` k ) ) = ( 2 / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) |
159 |
118 158
|
eqtr4d |
|- ( k e. NN0 -> ( F ` k ) = ( ( 2 / _i ) x. ( ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ` k ) ) ) |
160 |
159
|
adantl |
|- ( ( T. /\ k e. NN0 ) -> ( F ` k ) = ( ( 2 / _i ) x. ( ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ` k ) ) ) |
161 |
2 3 8 31 112 160
|
isermulc2 |
|- ( T. -> seq 0 ( + , F ) ~~> ( ( 2 / _i ) x. ( arctan ` ( _i / 3 ) ) ) ) |
162 |
161
|
mptru |
|- seq 0 ( + , F ) ~~> ( ( 2 / _i ) x. ( arctan ` ( _i / 3 ) ) ) |
163 |
|
bndatandm |
|- ( ( ( _i / 3 ) e. CC /\ ( abs ` ( _i / 3 ) ) < 1 ) -> ( _i / 3 ) e. dom arctan ) |
164 |
11 27 163
|
mp2an |
|- ( _i / 3 ) e. dom arctan |
165 |
|
atanval |
|- ( ( _i / 3 ) e. dom arctan -> ( arctan ` ( _i / 3 ) ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. ( _i / 3 ) ) ) ) - ( log ` ( 1 + ( _i x. ( _i / 3 ) ) ) ) ) ) ) |
166 |
164 165
|
ax-mp |
|- ( arctan ` ( _i / 3 ) ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. ( _i / 3 ) ) ) ) - ( log ` ( 1 + ( _i x. ( _i / 3 ) ) ) ) ) ) |
167 |
|
df-4 |
|- 4 = ( 3 + 1 ) |
168 |
167
|
oveq1i |
|- ( 4 / 3 ) = ( ( 3 + 1 ) / 3 ) |
169 |
|
ax-1cn |
|- 1 e. CC |
170 |
9 169 9 10
|
divdiri |
|- ( ( 3 + 1 ) / 3 ) = ( ( 3 / 3 ) + ( 1 / 3 ) ) |
171 |
9 10
|
dividi |
|- ( 3 / 3 ) = 1 |
172 |
171
|
oveq1i |
|- ( ( 3 / 3 ) + ( 1 / 3 ) ) = ( 1 + ( 1 / 3 ) ) |
173 |
168 170 172
|
3eqtri |
|- ( 4 / 3 ) = ( 1 + ( 1 / 3 ) ) |
174 |
169 9 10
|
divcli |
|- ( 1 / 3 ) e. CC |
175 |
169 174
|
subnegi |
|- ( 1 - -u ( 1 / 3 ) ) = ( 1 + ( 1 / 3 ) ) |
176 |
|
divneg |
|- ( ( 1 e. CC /\ 3 e. CC /\ 3 =/= 0 ) -> -u ( 1 / 3 ) = ( -u 1 / 3 ) ) |
177 |
169 9 10 176
|
mp3an |
|- -u ( 1 / 3 ) = ( -u 1 / 3 ) |
178 |
|
ixi |
|- ( _i x. _i ) = -u 1 |
179 |
178
|
oveq1i |
|- ( ( _i x. _i ) / 3 ) = ( -u 1 / 3 ) |
180 |
5 5 9 10
|
divassi |
|- ( ( _i x. _i ) / 3 ) = ( _i x. ( _i / 3 ) ) |
181 |
177 179 180
|
3eqtr2i |
|- -u ( 1 / 3 ) = ( _i x. ( _i / 3 ) ) |
182 |
181
|
oveq2i |
|- ( 1 - -u ( 1 / 3 ) ) = ( 1 - ( _i x. ( _i / 3 ) ) ) |
183 |
173 175 182
|
3eqtr2ri |
|- ( 1 - ( _i x. ( _i / 3 ) ) ) = ( 4 / 3 ) |
184 |
183
|
fveq2i |
|- ( log ` ( 1 - ( _i x. ( _i / 3 ) ) ) ) = ( log ` ( 4 / 3 ) ) |
185 |
9 10
|
pm3.2i |
|- ( 3 e. CC /\ 3 =/= 0 ) |
186 |
|
divsubdir |
|- ( ( 3 e. CC /\ 1 e. CC /\ ( 3 e. CC /\ 3 =/= 0 ) ) -> ( ( 3 - 1 ) / 3 ) = ( ( 3 / 3 ) - ( 1 / 3 ) ) ) |
187 |
9 169 185 186
|
mp3an |
|- ( ( 3 - 1 ) / 3 ) = ( ( 3 / 3 ) - ( 1 / 3 ) ) |
188 |
|
3m1e2 |
|- ( 3 - 1 ) = 2 |
189 |
188
|
oveq1i |
|- ( ( 3 - 1 ) / 3 ) = ( 2 / 3 ) |
190 |
171
|
oveq1i |
|- ( ( 3 / 3 ) - ( 1 / 3 ) ) = ( 1 - ( 1 / 3 ) ) |
191 |
187 189 190
|
3eqtr3i |
|- ( 2 / 3 ) = ( 1 - ( 1 / 3 ) ) |
192 |
169 174
|
negsubi |
|- ( 1 + -u ( 1 / 3 ) ) = ( 1 - ( 1 / 3 ) ) |
193 |
181
|
oveq2i |
|- ( 1 + -u ( 1 / 3 ) ) = ( 1 + ( _i x. ( _i / 3 ) ) ) |
194 |
191 192 193
|
3eqtr2ri |
|- ( 1 + ( _i x. ( _i / 3 ) ) ) = ( 2 / 3 ) |
195 |
194
|
fveq2i |
|- ( log ` ( 1 + ( _i x. ( _i / 3 ) ) ) ) = ( log ` ( 2 / 3 ) ) |
196 |
184 195
|
oveq12i |
|- ( ( log ` ( 1 - ( _i x. ( _i / 3 ) ) ) ) - ( log ` ( 1 + ( _i x. ( _i / 3 ) ) ) ) ) = ( ( log ` ( 4 / 3 ) ) - ( log ` ( 2 / 3 ) ) ) |
197 |
|
4re |
|- 4 e. RR |
198 |
|
4pos |
|- 0 < 4 |
199 |
197 198
|
elrpii |
|- 4 e. RR+ |
200 |
|
3rp |
|- 3 e. RR+ |
201 |
|
rpdivcl |
|- ( ( 4 e. RR+ /\ 3 e. RR+ ) -> ( 4 / 3 ) e. RR+ ) |
202 |
199 200 201
|
mp2an |
|- ( 4 / 3 ) e. RR+ |
203 |
|
2rp |
|- 2 e. RR+ |
204 |
|
rpdivcl |
|- ( ( 2 e. RR+ /\ 3 e. RR+ ) -> ( 2 / 3 ) e. RR+ ) |
205 |
203 200 204
|
mp2an |
|- ( 2 / 3 ) e. RR+ |
206 |
|
relogdiv |
|- ( ( ( 4 / 3 ) e. RR+ /\ ( 2 / 3 ) e. RR+ ) -> ( log ` ( ( 4 / 3 ) / ( 2 / 3 ) ) ) = ( ( log ` ( 4 / 3 ) ) - ( log ` ( 2 / 3 ) ) ) ) |
207 |
202 205 206
|
mp2an |
|- ( log ` ( ( 4 / 3 ) / ( 2 / 3 ) ) ) = ( ( log ` ( 4 / 3 ) ) - ( log ` ( 2 / 3 ) ) ) |
208 |
|
4cn |
|- 4 e. CC |
209 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
210 |
|
divcan7 |
|- ( ( 4 e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( 3 e. CC /\ 3 =/= 0 ) ) -> ( ( 4 / 3 ) / ( 2 / 3 ) ) = ( 4 / 2 ) ) |
211 |
208 209 185 210
|
mp3an |
|- ( ( 4 / 3 ) / ( 2 / 3 ) ) = ( 4 / 2 ) |
212 |
|
4d2e2 |
|- ( 4 / 2 ) = 2 |
213 |
211 212
|
eqtri |
|- ( ( 4 / 3 ) / ( 2 / 3 ) ) = 2 |
214 |
213
|
fveq2i |
|- ( log ` ( ( 4 / 3 ) / ( 2 / 3 ) ) ) = ( log ` 2 ) |
215 |
196 207 214
|
3eqtr2i |
|- ( ( log ` ( 1 - ( _i x. ( _i / 3 ) ) ) ) - ( log ` ( 1 + ( _i x. ( _i / 3 ) ) ) ) ) = ( log ` 2 ) |
216 |
215
|
oveq2i |
|- ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. ( _i / 3 ) ) ) ) - ( log ` ( 1 + ( _i x. ( _i / 3 ) ) ) ) ) ) = ( ( _i / 2 ) x. ( log ` 2 ) ) |
217 |
166 216
|
eqtri |
|- ( arctan ` ( _i / 3 ) ) = ( ( _i / 2 ) x. ( log ` 2 ) ) |
218 |
217
|
oveq2i |
|- ( ( 2 / _i ) x. ( arctan ` ( _i / 3 ) ) ) = ( ( 2 / _i ) x. ( ( _i / 2 ) x. ( log ` 2 ) ) ) |
219 |
|
2ne0 |
|- 2 =/= 0 |
220 |
5 4 219
|
divcli |
|- ( _i / 2 ) e. CC |
221 |
|
logcl |
|- ( ( 2 e. CC /\ 2 =/= 0 ) -> ( log ` 2 ) e. CC ) |
222 |
4 219 221
|
mp2an |
|- ( log ` 2 ) e. CC |
223 |
7 220 222
|
mulassi |
|- ( ( ( 2 / _i ) x. ( _i / 2 ) ) x. ( log ` 2 ) ) = ( ( 2 / _i ) x. ( ( _i / 2 ) x. ( log ` 2 ) ) ) |
224 |
218 223
|
eqtr4i |
|- ( ( 2 / _i ) x. ( arctan ` ( _i / 3 ) ) ) = ( ( ( 2 / _i ) x. ( _i / 2 ) ) x. ( log ` 2 ) ) |
225 |
|
divcan6 |
|- ( ( ( 2 e. CC /\ 2 =/= 0 ) /\ ( _i e. CC /\ _i =/= 0 ) ) -> ( ( 2 / _i ) x. ( _i / 2 ) ) = 1 ) |
226 |
4 219 5 6 225
|
mp4an |
|- ( ( 2 / _i ) x. ( _i / 2 ) ) = 1 |
227 |
226
|
oveq1i |
|- ( ( ( 2 / _i ) x. ( _i / 2 ) ) x. ( log ` 2 ) ) = ( 1 x. ( log ` 2 ) ) |
228 |
222
|
mulid2i |
|- ( 1 x. ( log ` 2 ) ) = ( log ` 2 ) |
229 |
224 227 228
|
3eqtri |
|- ( ( 2 / _i ) x. ( arctan ` ( _i / 3 ) ) ) = ( log ` 2 ) |
230 |
162 229
|
breqtri |
|- seq 0 ( + , F ) ~~> ( log ` 2 ) |