| Step | Hyp | Ref | Expression | 
						
							| 1 |  | log2ub |  |-  ( log ` 2 ) < ( ; ; 2 5 3 / ; ; 3 6 5 ) | 
						
							| 2 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 3 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 4 |  | 5nn0 |  |-  5 e. NN0 | 
						
							| 5 |  | 6nn0 |  |-  6 e. NN0 | 
						
							| 6 |  | 2lt3 |  |-  2 < 3 | 
						
							| 7 |  | 5lt10 |  |-  5 < ; 1 0 | 
						
							| 8 |  | 3lt10 |  |-  3 < ; 1 0 | 
						
							| 9 | 2 3 4 5 3 4 6 7 8 | 3decltc |  |-  ; ; 2 5 3 < ; ; 3 6 5 | 
						
							| 10 | 2 4 | deccl |  |-  ; 2 5 e. NN0 | 
						
							| 11 | 10 3 | deccl |  |-  ; ; 2 5 3 e. NN0 | 
						
							| 12 | 11 | nn0rei |  |-  ; ; 2 5 3 e. RR | 
						
							| 13 | 3 5 | deccl |  |-  ; 3 6 e. NN0 | 
						
							| 14 | 13 4 | deccl |  |-  ; ; 3 6 5 e. NN0 | 
						
							| 15 | 14 | nn0rei |  |-  ; ; 3 6 5 e. RR | 
						
							| 16 |  | 6nn |  |-  6 e. NN | 
						
							| 17 | 3 16 | decnncl |  |-  ; 3 6 e. NN | 
						
							| 18 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 19 |  | 10pos |  |-  0 < ; 1 0 | 
						
							| 20 | 17 4 18 19 | declti |  |-  0 < ; ; 3 6 5 | 
						
							| 21 | 12 15 15 20 | ltdiv1ii |  |-  ( ; ; 2 5 3 < ; ; 3 6 5 <-> ( ; ; 2 5 3 / ; ; 3 6 5 ) < ( ; ; 3 6 5 / ; ; 3 6 5 ) ) | 
						
							| 22 | 9 21 | mpbi |  |-  ( ; ; 2 5 3 / ; ; 3 6 5 ) < ( ; ; 3 6 5 / ; ; 3 6 5 ) | 
						
							| 23 | 15 | recni |  |-  ; ; 3 6 5 e. CC | 
						
							| 24 |  | 0re |  |-  0 e. RR | 
						
							| 25 | 24 20 | gtneii |  |-  ; ; 3 6 5 =/= 0 | 
						
							| 26 | 23 25 | dividi |  |-  ( ; ; 3 6 5 / ; ; 3 6 5 ) = 1 | 
						
							| 27 | 22 26 | breqtri |  |-  ( ; ; 2 5 3 / ; ; 3 6 5 ) < 1 | 
						
							| 28 |  | 2rp |  |-  2 e. RR+ | 
						
							| 29 |  | relogcl |  |-  ( 2 e. RR+ -> ( log ` 2 ) e. RR ) | 
						
							| 30 | 28 29 | ax-mp |  |-  ( log ` 2 ) e. RR | 
						
							| 31 | 12 15 25 | redivcli |  |-  ( ; ; 2 5 3 / ; ; 3 6 5 ) e. RR | 
						
							| 32 |  | 1re |  |-  1 e. RR | 
						
							| 33 | 30 31 32 | lttri |  |-  ( ( ( log ` 2 ) < ( ; ; 2 5 3 / ; ; 3 6 5 ) /\ ( ; ; 2 5 3 / ; ; 3 6 5 ) < 1 ) -> ( log ` 2 ) < 1 ) | 
						
							| 34 | 1 27 33 | mp2an |  |-  ( log ` 2 ) < 1 |