| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fzfid |  |-  ( N e. NN0 -> ( 0 ... ( N - 1 ) ) e. Fin ) | 
						
							| 2 |  | elfznn0 |  |-  ( n e. ( 0 ... ( N - 1 ) ) -> n e. NN0 ) | 
						
							| 3 |  | 2re |  |-  2 e. RR | 
						
							| 4 |  | 3nn |  |-  3 e. NN | 
						
							| 5 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 6 |  | simpr |  |-  ( ( N e. NN0 /\ n e. NN0 ) -> n e. NN0 ) | 
						
							| 7 |  | nn0mulcl |  |-  ( ( 2 e. NN0 /\ n e. NN0 ) -> ( 2 x. n ) e. NN0 ) | 
						
							| 8 | 5 6 7 | sylancr |  |-  ( ( N e. NN0 /\ n e. NN0 ) -> ( 2 x. n ) e. NN0 ) | 
						
							| 9 |  | nn0p1nn |  |-  ( ( 2 x. n ) e. NN0 -> ( ( 2 x. n ) + 1 ) e. NN ) | 
						
							| 10 | 8 9 | syl |  |-  ( ( N e. NN0 /\ n e. NN0 ) -> ( ( 2 x. n ) + 1 ) e. NN ) | 
						
							| 11 |  | nnmulcl |  |-  ( ( 3 e. NN /\ ( ( 2 x. n ) + 1 ) e. NN ) -> ( 3 x. ( ( 2 x. n ) + 1 ) ) e. NN ) | 
						
							| 12 | 4 10 11 | sylancr |  |-  ( ( N e. NN0 /\ n e. NN0 ) -> ( 3 x. ( ( 2 x. n ) + 1 ) ) e. NN ) | 
						
							| 13 |  | 9nn |  |-  9 e. NN | 
						
							| 14 |  | nnexpcl |  |-  ( ( 9 e. NN /\ n e. NN0 ) -> ( 9 ^ n ) e. NN ) | 
						
							| 15 | 13 6 14 | sylancr |  |-  ( ( N e. NN0 /\ n e. NN0 ) -> ( 9 ^ n ) e. NN ) | 
						
							| 16 | 12 15 | nnmulcld |  |-  ( ( N e. NN0 /\ n e. NN0 ) -> ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) e. NN ) | 
						
							| 17 |  | nndivre |  |-  ( ( 2 e. RR /\ ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) e. NN ) -> ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) e. RR ) | 
						
							| 18 | 3 16 17 | sylancr |  |-  ( ( N e. NN0 /\ n e. NN0 ) -> ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) e. RR ) | 
						
							| 19 | 18 | recnd |  |-  ( ( N e. NN0 /\ n e. NN0 ) -> ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) e. CC ) | 
						
							| 20 | 2 19 | sylan2 |  |-  ( ( N e. NN0 /\ n e. ( 0 ... ( N - 1 ) ) ) -> ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) e. CC ) | 
						
							| 21 | 1 20 | fsumcl |  |-  ( N e. NN0 -> sum_ n e. ( 0 ... ( N - 1 ) ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) e. CC ) | 
						
							| 22 |  | eqid |  |-  ( ZZ>= ` N ) = ( ZZ>= ` N ) | 
						
							| 23 |  | nn0z |  |-  ( N e. NN0 -> N e. ZZ ) | 
						
							| 24 |  | eluznn0 |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> n e. NN0 ) | 
						
							| 25 |  | oveq2 |  |-  ( k = n -> ( 2 x. k ) = ( 2 x. n ) ) | 
						
							| 26 | 25 | oveq1d |  |-  ( k = n -> ( ( 2 x. k ) + 1 ) = ( ( 2 x. n ) + 1 ) ) | 
						
							| 27 | 26 | oveq2d |  |-  ( k = n -> ( 3 x. ( ( 2 x. k ) + 1 ) ) = ( 3 x. ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 28 |  | oveq2 |  |-  ( k = n -> ( 9 ^ k ) = ( 9 ^ n ) ) | 
						
							| 29 | 27 28 | oveq12d |  |-  ( k = n -> ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) = ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) | 
						
							| 30 | 29 | oveq2d |  |-  ( k = n -> ( 2 / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) = ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) | 
						
							| 31 |  | eqid |  |-  ( k e. NN0 |-> ( 2 / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) = ( k e. NN0 |-> ( 2 / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) | 
						
							| 32 |  | ovex |  |-  ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) e. _V | 
						
							| 33 | 30 31 32 | fvmpt |  |-  ( n e. NN0 -> ( ( k e. NN0 |-> ( 2 / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) ` n ) = ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) | 
						
							| 34 | 24 33 | syl |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> ( ( k e. NN0 |-> ( 2 / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) ` n ) = ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) | 
						
							| 35 | 24 18 | syldan |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) e. RR ) | 
						
							| 36 | 31 | log2cnv |  |-  seq 0 ( + , ( k e. NN0 |-> ( 2 / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) ) ~~> ( log ` 2 ) | 
						
							| 37 |  | seqex |  |-  seq 0 ( + , ( k e. NN0 |-> ( 2 / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) ) e. _V | 
						
							| 38 |  | fvex |  |-  ( log ` 2 ) e. _V | 
						
							| 39 | 37 38 | breldm |  |-  ( seq 0 ( + , ( k e. NN0 |-> ( 2 / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) ) ~~> ( log ` 2 ) -> seq 0 ( + , ( k e. NN0 |-> ( 2 / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) ) e. dom ~~> ) | 
						
							| 40 | 36 39 | mp1i |  |-  ( N e. NN0 -> seq 0 ( + , ( k e. NN0 |-> ( 2 / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) ) e. dom ~~> ) | 
						
							| 41 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 42 |  | id |  |-  ( N e. NN0 -> N e. NN0 ) | 
						
							| 43 | 33 | adantl |  |-  ( ( N e. NN0 /\ n e. NN0 ) -> ( ( k e. NN0 |-> ( 2 / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) ` n ) = ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) | 
						
							| 44 | 43 19 | eqeltrd |  |-  ( ( N e. NN0 /\ n e. NN0 ) -> ( ( k e. NN0 |-> ( 2 / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) ` n ) e. CC ) | 
						
							| 45 | 41 42 44 | iserex |  |-  ( N e. NN0 -> ( seq 0 ( + , ( k e. NN0 |-> ( 2 / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) ) e. dom ~~> <-> seq N ( + , ( k e. NN0 |-> ( 2 / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) ) e. dom ~~> ) ) | 
						
							| 46 | 40 45 | mpbid |  |-  ( N e. NN0 -> seq N ( + , ( k e. NN0 |-> ( 2 / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) ) e. dom ~~> ) | 
						
							| 47 | 22 23 34 35 46 | isumrecl |  |-  ( N e. NN0 -> sum_ n e. ( ZZ>= ` N ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) e. RR ) | 
						
							| 48 | 47 | recnd |  |-  ( N e. NN0 -> sum_ n e. ( ZZ>= ` N ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) e. CC ) | 
						
							| 49 |  | 0zd |  |-  ( N e. NN0 -> 0 e. ZZ ) | 
						
							| 50 | 36 | a1i |  |-  ( N e. NN0 -> seq 0 ( + , ( k e. NN0 |-> ( 2 / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) ) ~~> ( log ` 2 ) ) | 
						
							| 51 | 41 49 43 19 50 | isumclim |  |-  ( N e. NN0 -> sum_ n e. NN0 ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) = ( log ` 2 ) ) | 
						
							| 52 | 41 22 42 43 19 40 | isumsplit |  |-  ( N e. NN0 -> sum_ n e. NN0 ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) = ( sum_ n e. ( 0 ... ( N - 1 ) ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) + sum_ n e. ( ZZ>= ` N ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) ) | 
						
							| 53 | 51 52 | eqtr3d |  |-  ( N e. NN0 -> ( log ` 2 ) = ( sum_ n e. ( 0 ... ( N - 1 ) ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) + sum_ n e. ( ZZ>= ` N ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) ) | 
						
							| 54 | 21 48 53 | mvrladdd |  |-  ( N e. NN0 -> ( ( log ` 2 ) - sum_ n e. ( 0 ... ( N - 1 ) ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) = sum_ n e. ( ZZ>= ` N ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) | 
						
							| 55 | 3 | a1i |  |-  ( ( N e. NN0 /\ n e. NN0 ) -> 2 e. RR ) | 
						
							| 56 |  | 0le2 |  |-  0 <_ 2 | 
						
							| 57 | 56 | a1i |  |-  ( ( N e. NN0 /\ n e. NN0 ) -> 0 <_ 2 ) | 
						
							| 58 | 16 | nnred |  |-  ( ( N e. NN0 /\ n e. NN0 ) -> ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) e. RR ) | 
						
							| 59 | 16 | nngt0d |  |-  ( ( N e. NN0 /\ n e. NN0 ) -> 0 < ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) | 
						
							| 60 |  | divge0 |  |-  ( ( ( 2 e. RR /\ 0 <_ 2 ) /\ ( ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) e. RR /\ 0 < ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) -> 0 <_ ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) | 
						
							| 61 | 55 57 58 59 60 | syl22anc |  |-  ( ( N e. NN0 /\ n e. NN0 ) -> 0 <_ ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) | 
						
							| 62 | 24 61 | syldan |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> 0 <_ ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) | 
						
							| 63 | 22 23 34 35 46 62 | isumge0 |  |-  ( N e. NN0 -> 0 <_ sum_ n e. ( ZZ>= ` N ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) | 
						
							| 64 |  | oveq2 |  |-  ( k = n -> ( ( 1 / 9 ) ^ k ) = ( ( 1 / 9 ) ^ n ) ) | 
						
							| 65 | 64 | oveq2d |  |-  ( k = n -> ( ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) x. ( ( 1 / 9 ) ^ k ) ) = ( ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) x. ( ( 1 / 9 ) ^ n ) ) ) | 
						
							| 66 |  | eqid |  |-  ( k e. NN0 |-> ( ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) x. ( ( 1 / 9 ) ^ k ) ) ) = ( k e. NN0 |-> ( ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) x. ( ( 1 / 9 ) ^ k ) ) ) | 
						
							| 67 |  | ovex |  |-  ( ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) x. ( ( 1 / 9 ) ^ n ) ) e. _V | 
						
							| 68 | 65 66 67 | fvmpt |  |-  ( n e. NN0 -> ( ( k e. NN0 |-> ( ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) x. ( ( 1 / 9 ) ^ k ) ) ) ` n ) = ( ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) x. ( ( 1 / 9 ) ^ n ) ) ) | 
						
							| 69 | 68 | adantl |  |-  ( ( N e. NN0 /\ n e. NN0 ) -> ( ( k e. NN0 |-> ( ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) x. ( ( 1 / 9 ) ^ k ) ) ) ` n ) = ( ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) x. ( ( 1 / 9 ) ^ n ) ) ) | 
						
							| 70 |  | 9cn |  |-  9 e. CC | 
						
							| 71 | 70 | a1i |  |-  ( ( N e. NN0 /\ n e. NN0 ) -> 9 e. CC ) | 
						
							| 72 | 13 | nnne0i |  |-  9 =/= 0 | 
						
							| 73 | 72 | a1i |  |-  ( ( N e. NN0 /\ n e. NN0 ) -> 9 =/= 0 ) | 
						
							| 74 |  | nn0z |  |-  ( n e. NN0 -> n e. ZZ ) | 
						
							| 75 | 74 | adantl |  |-  ( ( N e. NN0 /\ n e. NN0 ) -> n e. ZZ ) | 
						
							| 76 | 71 73 75 | exprecd |  |-  ( ( N e. NN0 /\ n e. NN0 ) -> ( ( 1 / 9 ) ^ n ) = ( 1 / ( 9 ^ n ) ) ) | 
						
							| 77 | 76 | oveq2d |  |-  ( ( N e. NN0 /\ n e. NN0 ) -> ( ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) x. ( ( 1 / 9 ) ^ n ) ) = ( ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) x. ( 1 / ( 9 ^ n ) ) ) ) | 
						
							| 78 |  | nn0mulcl |  |-  ( ( 2 e. NN0 /\ N e. NN0 ) -> ( 2 x. N ) e. NN0 ) | 
						
							| 79 | 5 78 | mpan |  |-  ( N e. NN0 -> ( 2 x. N ) e. NN0 ) | 
						
							| 80 |  | nn0p1nn |  |-  ( ( 2 x. N ) e. NN0 -> ( ( 2 x. N ) + 1 ) e. NN ) | 
						
							| 81 | 79 80 | syl |  |-  ( N e. NN0 -> ( ( 2 x. N ) + 1 ) e. NN ) | 
						
							| 82 |  | nnmulcl |  |-  ( ( 3 e. NN /\ ( ( 2 x. N ) + 1 ) e. NN ) -> ( 3 x. ( ( 2 x. N ) + 1 ) ) e. NN ) | 
						
							| 83 | 4 81 82 | sylancr |  |-  ( N e. NN0 -> ( 3 x. ( ( 2 x. N ) + 1 ) ) e. NN ) | 
						
							| 84 |  | nndivre |  |-  ( ( 2 e. RR /\ ( 3 x. ( ( 2 x. N ) + 1 ) ) e. NN ) -> ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) e. RR ) | 
						
							| 85 | 3 83 84 | sylancr |  |-  ( N e. NN0 -> ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) e. RR ) | 
						
							| 86 | 85 | recnd |  |-  ( N e. NN0 -> ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) e. CC ) | 
						
							| 87 | 86 | adantr |  |-  ( ( N e. NN0 /\ n e. NN0 ) -> ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) e. CC ) | 
						
							| 88 | 15 | nncnd |  |-  ( ( N e. NN0 /\ n e. NN0 ) -> ( 9 ^ n ) e. CC ) | 
						
							| 89 | 15 | nnne0d |  |-  ( ( N e. NN0 /\ n e. NN0 ) -> ( 9 ^ n ) =/= 0 ) | 
						
							| 90 | 87 88 89 | divrecd |  |-  ( ( N e. NN0 /\ n e. NN0 ) -> ( ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) / ( 9 ^ n ) ) = ( ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) x. ( 1 / ( 9 ^ n ) ) ) ) | 
						
							| 91 |  | 2cnd |  |-  ( ( N e. NN0 /\ n e. NN0 ) -> 2 e. CC ) | 
						
							| 92 | 83 | adantr |  |-  ( ( N e. NN0 /\ n e. NN0 ) -> ( 3 x. ( ( 2 x. N ) + 1 ) ) e. NN ) | 
						
							| 93 | 92 | nncnd |  |-  ( ( N e. NN0 /\ n e. NN0 ) -> ( 3 x. ( ( 2 x. N ) + 1 ) ) e. CC ) | 
						
							| 94 | 92 | nnne0d |  |-  ( ( N e. NN0 /\ n e. NN0 ) -> ( 3 x. ( ( 2 x. N ) + 1 ) ) =/= 0 ) | 
						
							| 95 | 91 93 88 94 89 | divdiv1d |  |-  ( ( N e. NN0 /\ n e. NN0 ) -> ( ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) / ( 9 ^ n ) ) = ( 2 / ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ n ) ) ) ) | 
						
							| 96 | 77 90 95 | 3eqtr2d |  |-  ( ( N e. NN0 /\ n e. NN0 ) -> ( ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) x. ( ( 1 / 9 ) ^ n ) ) = ( 2 / ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ n ) ) ) ) | 
						
							| 97 | 69 96 | eqtrd |  |-  ( ( N e. NN0 /\ n e. NN0 ) -> ( ( k e. NN0 |-> ( ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) x. ( ( 1 / 9 ) ^ k ) ) ) ` n ) = ( 2 / ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ n ) ) ) ) | 
						
							| 98 | 24 97 | syldan |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> ( ( k e. NN0 |-> ( ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) x. ( ( 1 / 9 ) ^ k ) ) ) ` n ) = ( 2 / ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ n ) ) ) ) | 
						
							| 99 | 92 15 | nnmulcld |  |-  ( ( N e. NN0 /\ n e. NN0 ) -> ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ n ) ) e. NN ) | 
						
							| 100 |  | nndivre |  |-  ( ( 2 e. RR /\ ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ n ) ) e. NN ) -> ( 2 / ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ n ) ) ) e. RR ) | 
						
							| 101 | 3 99 100 | sylancr |  |-  ( ( N e. NN0 /\ n e. NN0 ) -> ( 2 / ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ n ) ) ) e. RR ) | 
						
							| 102 | 24 101 | syldan |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> ( 2 / ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ n ) ) ) e. RR ) | 
						
							| 103 | 79 | adantr |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> ( 2 x. N ) e. NN0 ) | 
						
							| 104 | 103 | nn0red |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> ( 2 x. N ) e. RR ) | 
						
							| 105 | 5 24 7 | sylancr |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> ( 2 x. n ) e. NN0 ) | 
						
							| 106 | 105 | nn0red |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> ( 2 x. n ) e. RR ) | 
						
							| 107 |  | 1red |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> 1 e. RR ) | 
						
							| 108 |  | eluzle |  |-  ( n e. ( ZZ>= ` N ) -> N <_ n ) | 
						
							| 109 | 108 | adantl |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> N <_ n ) | 
						
							| 110 |  | nn0re |  |-  ( N e. NN0 -> N e. RR ) | 
						
							| 111 | 110 | adantr |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> N e. RR ) | 
						
							| 112 | 24 | nn0red |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> n e. RR ) | 
						
							| 113 | 3 | a1i |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> 2 e. RR ) | 
						
							| 114 |  | 2pos |  |-  0 < 2 | 
						
							| 115 | 114 | a1i |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> 0 < 2 ) | 
						
							| 116 |  | lemul2 |  |-  ( ( N e. RR /\ n e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( N <_ n <-> ( 2 x. N ) <_ ( 2 x. n ) ) ) | 
						
							| 117 | 111 112 113 115 116 | syl112anc |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> ( N <_ n <-> ( 2 x. N ) <_ ( 2 x. n ) ) ) | 
						
							| 118 | 109 117 | mpbid |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> ( 2 x. N ) <_ ( 2 x. n ) ) | 
						
							| 119 | 104 106 107 118 | leadd1dd |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> ( ( 2 x. N ) + 1 ) <_ ( ( 2 x. n ) + 1 ) ) | 
						
							| 120 | 81 | adantr |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> ( ( 2 x. N ) + 1 ) e. NN ) | 
						
							| 121 | 120 | nnred |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> ( ( 2 x. N ) + 1 ) e. RR ) | 
						
							| 122 | 24 10 | syldan |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> ( ( 2 x. n ) + 1 ) e. NN ) | 
						
							| 123 | 122 | nnred |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> ( ( 2 x. n ) + 1 ) e. RR ) | 
						
							| 124 |  | 3re |  |-  3 e. RR | 
						
							| 125 | 124 | a1i |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> 3 e. RR ) | 
						
							| 126 |  | 3pos |  |-  0 < 3 | 
						
							| 127 | 126 | a1i |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> 0 < 3 ) | 
						
							| 128 |  | lemul2 |  |-  ( ( ( ( 2 x. N ) + 1 ) e. RR /\ ( ( 2 x. n ) + 1 ) e. RR /\ ( 3 e. RR /\ 0 < 3 ) ) -> ( ( ( 2 x. N ) + 1 ) <_ ( ( 2 x. n ) + 1 ) <-> ( 3 x. ( ( 2 x. N ) + 1 ) ) <_ ( 3 x. ( ( 2 x. n ) + 1 ) ) ) ) | 
						
							| 129 | 121 123 125 127 128 | syl112anc |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> ( ( ( 2 x. N ) + 1 ) <_ ( ( 2 x. n ) + 1 ) <-> ( 3 x. ( ( 2 x. N ) + 1 ) ) <_ ( 3 x. ( ( 2 x. n ) + 1 ) ) ) ) | 
						
							| 130 | 119 129 | mpbid |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> ( 3 x. ( ( 2 x. N ) + 1 ) ) <_ ( 3 x. ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 131 | 83 | adantr |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> ( 3 x. ( ( 2 x. N ) + 1 ) ) e. NN ) | 
						
							| 132 | 131 | nnred |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> ( 3 x. ( ( 2 x. N ) + 1 ) ) e. RR ) | 
						
							| 133 | 24 12 | syldan |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> ( 3 x. ( ( 2 x. n ) + 1 ) ) e. NN ) | 
						
							| 134 | 133 | nnred |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> ( 3 x. ( ( 2 x. n ) + 1 ) ) e. RR ) | 
						
							| 135 | 13 24 14 | sylancr |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> ( 9 ^ n ) e. NN ) | 
						
							| 136 | 135 | nnred |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> ( 9 ^ n ) e. RR ) | 
						
							| 137 | 135 | nngt0d |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> 0 < ( 9 ^ n ) ) | 
						
							| 138 |  | lemul1 |  |-  ( ( ( 3 x. ( ( 2 x. N ) + 1 ) ) e. RR /\ ( 3 x. ( ( 2 x. n ) + 1 ) ) e. RR /\ ( ( 9 ^ n ) e. RR /\ 0 < ( 9 ^ n ) ) ) -> ( ( 3 x. ( ( 2 x. N ) + 1 ) ) <_ ( 3 x. ( ( 2 x. n ) + 1 ) ) <-> ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ n ) ) <_ ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) | 
						
							| 139 | 132 134 136 137 138 | syl112anc |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> ( ( 3 x. ( ( 2 x. N ) + 1 ) ) <_ ( 3 x. ( ( 2 x. n ) + 1 ) ) <-> ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ n ) ) <_ ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) | 
						
							| 140 | 130 139 | mpbid |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ n ) ) <_ ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) | 
						
							| 141 | 24 99 | syldan |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ n ) ) e. NN ) | 
						
							| 142 | 141 | nnred |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ n ) ) e. RR ) | 
						
							| 143 | 141 | nngt0d |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> 0 < ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ n ) ) ) | 
						
							| 144 | 24 58 | syldan |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) e. RR ) | 
						
							| 145 | 24 59 | syldan |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> 0 < ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) | 
						
							| 146 |  | lediv2 |  |-  ( ( ( ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ n ) ) e. RR /\ 0 < ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ n ) ) ) /\ ( ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) e. RR /\ 0 < ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ n ) ) <_ ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) <-> ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) <_ ( 2 / ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ n ) ) ) ) ) | 
						
							| 147 | 142 143 144 145 113 115 146 | syl222anc |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> ( ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ n ) ) <_ ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) <-> ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) <_ ( 2 / ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ n ) ) ) ) ) | 
						
							| 148 | 140 147 | mpbid |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) <_ ( 2 / ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ n ) ) ) ) | 
						
							| 149 |  | 9re |  |-  9 e. RR | 
						
							| 150 | 149 72 | rereccli |  |-  ( 1 / 9 ) e. RR | 
						
							| 151 | 150 | recni |  |-  ( 1 / 9 ) e. CC | 
						
							| 152 | 151 | a1i |  |-  ( N e. NN0 -> ( 1 / 9 ) e. CC ) | 
						
							| 153 |  | 0re |  |-  0 e. RR | 
						
							| 154 |  | 9pos |  |-  0 < 9 | 
						
							| 155 | 149 154 | recgt0ii |  |-  0 < ( 1 / 9 ) | 
						
							| 156 | 153 150 155 | ltleii |  |-  0 <_ ( 1 / 9 ) | 
						
							| 157 |  | absid |  |-  ( ( ( 1 / 9 ) e. RR /\ 0 <_ ( 1 / 9 ) ) -> ( abs ` ( 1 / 9 ) ) = ( 1 / 9 ) ) | 
						
							| 158 | 150 156 157 | mp2an |  |-  ( abs ` ( 1 / 9 ) ) = ( 1 / 9 ) | 
						
							| 159 |  | 1lt9 |  |-  1 < 9 | 
						
							| 160 |  | recgt1i |  |-  ( ( 9 e. RR /\ 1 < 9 ) -> ( 0 < ( 1 / 9 ) /\ ( 1 / 9 ) < 1 ) ) | 
						
							| 161 | 149 159 160 | mp2an |  |-  ( 0 < ( 1 / 9 ) /\ ( 1 / 9 ) < 1 ) | 
						
							| 162 | 161 | simpri |  |-  ( 1 / 9 ) < 1 | 
						
							| 163 | 158 162 | eqbrtri |  |-  ( abs ` ( 1 / 9 ) ) < 1 | 
						
							| 164 | 163 | a1i |  |-  ( N e. NN0 -> ( abs ` ( 1 / 9 ) ) < 1 ) | 
						
							| 165 |  | eqid |  |-  ( k e. NN0 |-> ( ( 1 / 9 ) ^ k ) ) = ( k e. NN0 |-> ( ( 1 / 9 ) ^ k ) ) | 
						
							| 166 |  | ovex |  |-  ( ( 1 / 9 ) ^ n ) e. _V | 
						
							| 167 | 64 165 166 | fvmpt |  |-  ( n e. NN0 -> ( ( k e. NN0 |-> ( ( 1 / 9 ) ^ k ) ) ` n ) = ( ( 1 / 9 ) ^ n ) ) | 
						
							| 168 | 24 167 | syl |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> ( ( k e. NN0 |-> ( ( 1 / 9 ) ^ k ) ) ` n ) = ( ( 1 / 9 ) ^ n ) ) | 
						
							| 169 | 152 164 42 168 | geolim2 |  |-  ( N e. NN0 -> seq N ( + , ( k e. NN0 |-> ( ( 1 / 9 ) ^ k ) ) ) ~~> ( ( ( 1 / 9 ) ^ N ) / ( 1 - ( 1 / 9 ) ) ) ) | 
						
							| 170 | 70 | a1i |  |-  ( N e. NN0 -> 9 e. CC ) | 
						
							| 171 | 72 | a1i |  |-  ( N e. NN0 -> 9 =/= 0 ) | 
						
							| 172 | 170 171 23 | exprecd |  |-  ( N e. NN0 -> ( ( 1 / 9 ) ^ N ) = ( 1 / ( 9 ^ N ) ) ) | 
						
							| 173 | 70 72 | dividi |  |-  ( 9 / 9 ) = 1 | 
						
							| 174 | 173 | oveq1i |  |-  ( ( 9 / 9 ) - ( 1 / 9 ) ) = ( 1 - ( 1 / 9 ) ) | 
						
							| 175 |  | ax-1cn |  |-  1 e. CC | 
						
							| 176 | 70 72 | pm3.2i |  |-  ( 9 e. CC /\ 9 =/= 0 ) | 
						
							| 177 |  | divsubdir |  |-  ( ( 9 e. CC /\ 1 e. CC /\ ( 9 e. CC /\ 9 =/= 0 ) ) -> ( ( 9 - 1 ) / 9 ) = ( ( 9 / 9 ) - ( 1 / 9 ) ) ) | 
						
							| 178 | 70 175 176 177 | mp3an |  |-  ( ( 9 - 1 ) / 9 ) = ( ( 9 / 9 ) - ( 1 / 9 ) ) | 
						
							| 179 |  | 9m1e8 |  |-  ( 9 - 1 ) = 8 | 
						
							| 180 | 179 | oveq1i |  |-  ( ( 9 - 1 ) / 9 ) = ( 8 / 9 ) | 
						
							| 181 | 178 180 | eqtr3i |  |-  ( ( 9 / 9 ) - ( 1 / 9 ) ) = ( 8 / 9 ) | 
						
							| 182 | 174 181 | eqtr3i |  |-  ( 1 - ( 1 / 9 ) ) = ( 8 / 9 ) | 
						
							| 183 | 182 | a1i |  |-  ( N e. NN0 -> ( 1 - ( 1 / 9 ) ) = ( 8 / 9 ) ) | 
						
							| 184 | 172 183 | oveq12d |  |-  ( N e. NN0 -> ( ( ( 1 / 9 ) ^ N ) / ( 1 - ( 1 / 9 ) ) ) = ( ( 1 / ( 9 ^ N ) ) / ( 8 / 9 ) ) ) | 
						
							| 185 | 175 | a1i |  |-  ( N e. NN0 -> 1 e. CC ) | 
						
							| 186 |  | nnexpcl |  |-  ( ( 9 e. NN /\ N e. NN0 ) -> ( 9 ^ N ) e. NN ) | 
						
							| 187 | 13 186 | mpan |  |-  ( N e. NN0 -> ( 9 ^ N ) e. NN ) | 
						
							| 188 | 187 | nncnd |  |-  ( N e. NN0 -> ( 9 ^ N ) e. CC ) | 
						
							| 189 |  | 8cn |  |-  8 e. CC | 
						
							| 190 | 189 70 72 | divcli |  |-  ( 8 / 9 ) e. CC | 
						
							| 191 | 190 | a1i |  |-  ( N e. NN0 -> ( 8 / 9 ) e. CC ) | 
						
							| 192 | 187 | nnne0d |  |-  ( N e. NN0 -> ( 9 ^ N ) =/= 0 ) | 
						
							| 193 |  | 8nn |  |-  8 e. NN | 
						
							| 194 | 193 | nnne0i |  |-  8 =/= 0 | 
						
							| 195 | 189 70 194 72 | divne0i |  |-  ( 8 / 9 ) =/= 0 | 
						
							| 196 | 195 | a1i |  |-  ( N e. NN0 -> ( 8 / 9 ) =/= 0 ) | 
						
							| 197 | 185 188 191 192 196 | divdiv32d |  |-  ( N e. NN0 -> ( ( 1 / ( 9 ^ N ) ) / ( 8 / 9 ) ) = ( ( 1 / ( 8 / 9 ) ) / ( 9 ^ N ) ) ) | 
						
							| 198 |  | recdiv |  |-  ( ( ( 8 e. CC /\ 8 =/= 0 ) /\ ( 9 e. CC /\ 9 =/= 0 ) ) -> ( 1 / ( 8 / 9 ) ) = ( 9 / 8 ) ) | 
						
							| 199 | 189 194 70 72 198 | mp4an |  |-  ( 1 / ( 8 / 9 ) ) = ( 9 / 8 ) | 
						
							| 200 | 199 | oveq1i |  |-  ( ( 1 / ( 8 / 9 ) ) / ( 9 ^ N ) ) = ( ( 9 / 8 ) / ( 9 ^ N ) ) | 
						
							| 201 | 189 | a1i |  |-  ( N e. NN0 -> 8 e. CC ) | 
						
							| 202 | 194 | a1i |  |-  ( N e. NN0 -> 8 =/= 0 ) | 
						
							| 203 | 170 201 188 202 192 | divdiv1d |  |-  ( N e. NN0 -> ( ( 9 / 8 ) / ( 9 ^ N ) ) = ( 9 / ( 8 x. ( 9 ^ N ) ) ) ) | 
						
							| 204 | 200 203 | eqtrid |  |-  ( N e. NN0 -> ( ( 1 / ( 8 / 9 ) ) / ( 9 ^ N ) ) = ( 9 / ( 8 x. ( 9 ^ N ) ) ) ) | 
						
							| 205 | 184 197 204 | 3eqtrd |  |-  ( N e. NN0 -> ( ( ( 1 / 9 ) ^ N ) / ( 1 - ( 1 / 9 ) ) ) = ( 9 / ( 8 x. ( 9 ^ N ) ) ) ) | 
						
							| 206 | 169 205 | breqtrd |  |-  ( N e. NN0 -> seq N ( + , ( k e. NN0 |-> ( ( 1 / 9 ) ^ k ) ) ) ~~> ( 9 / ( 8 x. ( 9 ^ N ) ) ) ) | 
						
							| 207 |  | expcl |  |-  ( ( ( 1 / 9 ) e. CC /\ n e. NN0 ) -> ( ( 1 / 9 ) ^ n ) e. CC ) | 
						
							| 208 | 151 24 207 | sylancr |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> ( ( 1 / 9 ) ^ n ) e. CC ) | 
						
							| 209 | 168 208 | eqeltrd |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> ( ( k e. NN0 |-> ( ( 1 / 9 ) ^ k ) ) ` n ) e. CC ) | 
						
							| 210 | 24 68 | syl |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> ( ( k e. NN0 |-> ( ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) x. ( ( 1 / 9 ) ^ k ) ) ) ` n ) = ( ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) x. ( ( 1 / 9 ) ^ n ) ) ) | 
						
							| 211 | 168 | oveq2d |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> ( ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) x. ( ( k e. NN0 |-> ( ( 1 / 9 ) ^ k ) ) ` n ) ) = ( ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) x. ( ( 1 / 9 ) ^ n ) ) ) | 
						
							| 212 | 210 211 | eqtr4d |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> ( ( k e. NN0 |-> ( ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) x. ( ( 1 / 9 ) ^ k ) ) ) ` n ) = ( ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) x. ( ( k e. NN0 |-> ( ( 1 / 9 ) ^ k ) ) ` n ) ) ) | 
						
							| 213 | 22 23 86 206 209 212 | isermulc2 |  |-  ( N e. NN0 -> seq N ( + , ( k e. NN0 |-> ( ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) x. ( ( 1 / 9 ) ^ k ) ) ) ) ~~> ( ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) x. ( 9 / ( 8 x. ( 9 ^ N ) ) ) ) ) | 
						
							| 214 |  | seqex |  |-  seq N ( + , ( k e. NN0 |-> ( ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) x. ( ( 1 / 9 ) ^ k ) ) ) ) e. _V | 
						
							| 215 |  | ovex |  |-  ( ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) x. ( 9 / ( 8 x. ( 9 ^ N ) ) ) ) e. _V | 
						
							| 216 | 214 215 | breldm |  |-  ( seq N ( + , ( k e. NN0 |-> ( ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) x. ( ( 1 / 9 ) ^ k ) ) ) ) ~~> ( ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) x. ( 9 / ( 8 x. ( 9 ^ N ) ) ) ) -> seq N ( + , ( k e. NN0 |-> ( ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) x. ( ( 1 / 9 ) ^ k ) ) ) ) e. dom ~~> ) | 
						
							| 217 | 213 216 | syl |  |-  ( N e. NN0 -> seq N ( + , ( k e. NN0 |-> ( ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) x. ( ( 1 / 9 ) ^ k ) ) ) ) e. dom ~~> ) | 
						
							| 218 | 22 23 34 35 98 102 148 46 217 | isumle |  |-  ( N e. NN0 -> sum_ n e. ( ZZ>= ` N ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) <_ sum_ n e. ( ZZ>= ` N ) ( 2 / ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ n ) ) ) ) | 
						
							| 219 | 102 | recnd |  |-  ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> ( 2 / ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ n ) ) ) e. CC ) | 
						
							| 220 |  | 3cn |  |-  3 e. CC | 
						
							| 221 |  | 4cn |  |-  4 e. CC | 
						
							| 222 |  | 2cn |  |-  2 e. CC | 
						
							| 223 |  | 4ne0 |  |-  4 =/= 0 | 
						
							| 224 |  | 3ne0 |  |-  3 =/= 0 | 
						
							| 225 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 226 | 220 221 222 220 223 224 225 | divdivdivi |  |-  ( ( 3 / 4 ) / ( 2 / 3 ) ) = ( ( 3 x. 3 ) / ( 4 x. 2 ) ) | 
						
							| 227 |  | 3t3e9 |  |-  ( 3 x. 3 ) = 9 | 
						
							| 228 |  | 4t2e8 |  |-  ( 4 x. 2 ) = 8 | 
						
							| 229 | 227 228 | oveq12i |  |-  ( ( 3 x. 3 ) / ( 4 x. 2 ) ) = ( 9 / 8 ) | 
						
							| 230 | 226 229 | eqtri |  |-  ( ( 3 / 4 ) / ( 2 / 3 ) ) = ( 9 / 8 ) | 
						
							| 231 | 230 | oveq2i |  |-  ( ( 2 / 3 ) x. ( ( 3 / 4 ) / ( 2 / 3 ) ) ) = ( ( 2 / 3 ) x. ( 9 / 8 ) ) | 
						
							| 232 | 220 221 223 | divcli |  |-  ( 3 / 4 ) e. CC | 
						
							| 233 | 222 220 224 | divcli |  |-  ( 2 / 3 ) e. CC | 
						
							| 234 | 222 220 225 224 | divne0i |  |-  ( 2 / 3 ) =/= 0 | 
						
							| 235 | 232 233 234 | divcan2i |  |-  ( ( 2 / 3 ) x. ( ( 3 / 4 ) / ( 2 / 3 ) ) ) = ( 3 / 4 ) | 
						
							| 236 | 231 235 | eqtr3i |  |-  ( ( 2 / 3 ) x. ( 9 / 8 ) ) = ( 3 / 4 ) | 
						
							| 237 | 236 | oveq1i |  |-  ( ( ( 2 / 3 ) x. ( 9 / 8 ) ) / ( ( ( 2 x. N ) + 1 ) x. ( 9 ^ N ) ) ) = ( ( 3 / 4 ) / ( ( ( 2 x. N ) + 1 ) x. ( 9 ^ N ) ) ) | 
						
							| 238 |  | 2cnd |  |-  ( N e. NN0 -> 2 e. CC ) | 
						
							| 239 | 220 | a1i |  |-  ( N e. NN0 -> 3 e. CC ) | 
						
							| 240 | 81 | nncnd |  |-  ( N e. NN0 -> ( ( 2 x. N ) + 1 ) e. CC ) | 
						
							| 241 | 224 | a1i |  |-  ( N e. NN0 -> 3 =/= 0 ) | 
						
							| 242 | 81 | nnne0d |  |-  ( N e. NN0 -> ( ( 2 x. N ) + 1 ) =/= 0 ) | 
						
							| 243 | 238 239 240 241 242 | divdiv1d |  |-  ( N e. NN0 -> ( ( 2 / 3 ) / ( ( 2 x. N ) + 1 ) ) = ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) ) | 
						
							| 244 | 243 203 | oveq12d |  |-  ( N e. NN0 -> ( ( ( 2 / 3 ) / ( ( 2 x. N ) + 1 ) ) x. ( ( 9 / 8 ) / ( 9 ^ N ) ) ) = ( ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) x. ( 9 / ( 8 x. ( 9 ^ N ) ) ) ) ) | 
						
							| 245 | 233 | a1i |  |-  ( N e. NN0 -> ( 2 / 3 ) e. CC ) | 
						
							| 246 | 70 189 194 | divcli |  |-  ( 9 / 8 ) e. CC | 
						
							| 247 | 246 | a1i |  |-  ( N e. NN0 -> ( 9 / 8 ) e. CC ) | 
						
							| 248 | 245 240 247 188 242 192 | divmuldivd |  |-  ( N e. NN0 -> ( ( ( 2 / 3 ) / ( ( 2 x. N ) + 1 ) ) x. ( ( 9 / 8 ) / ( 9 ^ N ) ) ) = ( ( ( 2 / 3 ) x. ( 9 / 8 ) ) / ( ( ( 2 x. N ) + 1 ) x. ( 9 ^ N ) ) ) ) | 
						
							| 249 | 244 248 | eqtr3d |  |-  ( N e. NN0 -> ( ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) x. ( 9 / ( 8 x. ( 9 ^ N ) ) ) ) = ( ( ( 2 / 3 ) x. ( 9 / 8 ) ) / ( ( ( 2 x. N ) + 1 ) x. ( 9 ^ N ) ) ) ) | 
						
							| 250 | 221 | a1i |  |-  ( N e. NN0 -> 4 e. CC ) | 
						
							| 251 | 250 240 188 | mulassd |  |-  ( N e. NN0 -> ( ( 4 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) = ( 4 x. ( ( ( 2 x. N ) + 1 ) x. ( 9 ^ N ) ) ) ) | 
						
							| 252 | 251 | oveq2d |  |-  ( N e. NN0 -> ( 3 / ( ( 4 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) ) = ( 3 / ( 4 x. ( ( ( 2 x. N ) + 1 ) x. ( 9 ^ N ) ) ) ) ) | 
						
							| 253 | 81 187 | nnmulcld |  |-  ( N e. NN0 -> ( ( ( 2 x. N ) + 1 ) x. ( 9 ^ N ) ) e. NN ) | 
						
							| 254 | 253 | nncnd |  |-  ( N e. NN0 -> ( ( ( 2 x. N ) + 1 ) x. ( 9 ^ N ) ) e. CC ) | 
						
							| 255 | 223 | a1i |  |-  ( N e. NN0 -> 4 =/= 0 ) | 
						
							| 256 | 253 | nnne0d |  |-  ( N e. NN0 -> ( ( ( 2 x. N ) + 1 ) x. ( 9 ^ N ) ) =/= 0 ) | 
						
							| 257 | 239 250 254 255 256 | divdiv1d |  |-  ( N e. NN0 -> ( ( 3 / 4 ) / ( ( ( 2 x. N ) + 1 ) x. ( 9 ^ N ) ) ) = ( 3 / ( 4 x. ( ( ( 2 x. N ) + 1 ) x. ( 9 ^ N ) ) ) ) ) | 
						
							| 258 | 252 257 | eqtr4d |  |-  ( N e. NN0 -> ( 3 / ( ( 4 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) ) = ( ( 3 / 4 ) / ( ( ( 2 x. N ) + 1 ) x. ( 9 ^ N ) ) ) ) | 
						
							| 259 | 237 249 258 | 3eqtr4a |  |-  ( N e. NN0 -> ( ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) x. ( 9 / ( 8 x. ( 9 ^ N ) ) ) ) = ( 3 / ( ( 4 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) ) ) | 
						
							| 260 | 213 259 | breqtrd |  |-  ( N e. NN0 -> seq N ( + , ( k e. NN0 |-> ( ( 2 / ( 3 x. ( ( 2 x. N ) + 1 ) ) ) x. ( ( 1 / 9 ) ^ k ) ) ) ) ~~> ( 3 / ( ( 4 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) ) ) | 
						
							| 261 | 22 23 98 219 260 | isumclim |  |-  ( N e. NN0 -> sum_ n e. ( ZZ>= ` N ) ( 2 / ( ( 3 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ n ) ) ) = ( 3 / ( ( 4 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) ) ) | 
						
							| 262 | 218 261 | breqtrd |  |-  ( N e. NN0 -> sum_ n e. ( ZZ>= ` N ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) <_ ( 3 / ( ( 4 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) ) ) | 
						
							| 263 |  | 4nn |  |-  4 e. NN | 
						
							| 264 |  | nnmulcl |  |-  ( ( 4 e. NN /\ ( ( 2 x. N ) + 1 ) e. NN ) -> ( 4 x. ( ( 2 x. N ) + 1 ) ) e. NN ) | 
						
							| 265 | 263 81 264 | sylancr |  |-  ( N e. NN0 -> ( 4 x. ( ( 2 x. N ) + 1 ) ) e. NN ) | 
						
							| 266 | 265 187 | nnmulcld |  |-  ( N e. NN0 -> ( ( 4 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) e. NN ) | 
						
							| 267 |  | nndivre |  |-  ( ( 3 e. RR /\ ( ( 4 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) e. NN ) -> ( 3 / ( ( 4 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) ) e. RR ) | 
						
							| 268 | 124 266 267 | sylancr |  |-  ( N e. NN0 -> ( 3 / ( ( 4 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) ) e. RR ) | 
						
							| 269 |  | elicc2 |  |-  ( ( 0 e. RR /\ ( 3 / ( ( 4 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) ) e. RR ) -> ( sum_ n e. ( ZZ>= ` N ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) e. ( 0 [,] ( 3 / ( ( 4 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) ) ) <-> ( sum_ n e. ( ZZ>= ` N ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) e. RR /\ 0 <_ sum_ n e. ( ZZ>= ` N ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) /\ sum_ n e. ( ZZ>= ` N ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) <_ ( 3 / ( ( 4 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) ) ) ) ) | 
						
							| 270 | 153 268 269 | sylancr |  |-  ( N e. NN0 -> ( sum_ n e. ( ZZ>= ` N ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) e. ( 0 [,] ( 3 / ( ( 4 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) ) ) <-> ( sum_ n e. ( ZZ>= ` N ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) e. RR /\ 0 <_ sum_ n e. ( ZZ>= ` N ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) /\ sum_ n e. ( ZZ>= ` N ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) <_ ( 3 / ( ( 4 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) ) ) ) ) | 
						
							| 271 | 47 63 262 270 | mpbir3and |  |-  ( N e. NN0 -> sum_ n e. ( ZZ>= ` N ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) e. ( 0 [,] ( 3 / ( ( 4 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) ) ) ) | 
						
							| 272 | 54 271 | eqeltrd |  |-  ( N e. NN0 -> ( ( log ` 2 ) - sum_ n e. ( 0 ... ( N - 1 ) ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) e. ( 0 [,] ( 3 / ( ( 4 x. ( ( 2 x. N ) + 1 ) ) x. ( 9 ^ N ) ) ) ) ) |