| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 4m1e3 |  |-  ( 4 - 1 ) = 3 | 
						
							| 2 | 1 | oveq2i |  |-  ( 0 ... ( 4 - 1 ) ) = ( 0 ... 3 ) | 
						
							| 3 | 2 | sumeq1i |  |-  sum_ n e. ( 0 ... ( 4 - 1 ) ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) = sum_ n e. ( 0 ... 3 ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) | 
						
							| 4 | 3 | oveq2i |  |-  ( ( log ` 2 ) - sum_ n e. ( 0 ... ( 4 - 1 ) ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) = ( ( log ` 2 ) - sum_ n e. ( 0 ... 3 ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) | 
						
							| 5 |  | 4nn0 |  |-  4 e. NN0 | 
						
							| 6 |  | log2tlbnd |  |-  ( 4 e. NN0 -> ( ( log ` 2 ) - sum_ n e. ( 0 ... ( 4 - 1 ) ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) e. ( 0 [,] ( 3 / ( ( 4 x. ( ( 2 x. 4 ) + 1 ) ) x. ( 9 ^ 4 ) ) ) ) ) | 
						
							| 7 | 5 6 | ax-mp |  |-  ( ( log ` 2 ) - sum_ n e. ( 0 ... ( 4 - 1 ) ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) e. ( 0 [,] ( 3 / ( ( 4 x. ( ( 2 x. 4 ) + 1 ) ) x. ( 9 ^ 4 ) ) ) ) | 
						
							| 8 | 4 7 | eqeltrri |  |-  ( ( log ` 2 ) - sum_ n e. ( 0 ... 3 ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) e. ( 0 [,] ( 3 / ( ( 4 x. ( ( 2 x. 4 ) + 1 ) ) x. ( 9 ^ 4 ) ) ) ) | 
						
							| 9 |  | 0re |  |-  0 e. RR | 
						
							| 10 |  | 3re |  |-  3 e. RR | 
						
							| 11 |  | 4nn |  |-  4 e. NN | 
						
							| 12 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 13 |  | 1nn |  |-  1 e. NN | 
						
							| 14 | 12 5 13 | numnncl |  |-  ( ( 2 x. 4 ) + 1 ) e. NN | 
						
							| 15 | 11 14 | nnmulcli |  |-  ( 4 x. ( ( 2 x. 4 ) + 1 ) ) e. NN | 
						
							| 16 |  | 9nn |  |-  9 e. NN | 
						
							| 17 |  | nnexpcl |  |-  ( ( 9 e. NN /\ 4 e. NN0 ) -> ( 9 ^ 4 ) e. NN ) | 
						
							| 18 | 16 5 17 | mp2an |  |-  ( 9 ^ 4 ) e. NN | 
						
							| 19 | 15 18 | nnmulcli |  |-  ( ( 4 x. ( ( 2 x. 4 ) + 1 ) ) x. ( 9 ^ 4 ) ) e. NN | 
						
							| 20 |  | nndivre |  |-  ( ( 3 e. RR /\ ( ( 4 x. ( ( 2 x. 4 ) + 1 ) ) x. ( 9 ^ 4 ) ) e. NN ) -> ( 3 / ( ( 4 x. ( ( 2 x. 4 ) + 1 ) ) x. ( 9 ^ 4 ) ) ) e. RR ) | 
						
							| 21 | 10 19 20 | mp2an |  |-  ( 3 / ( ( 4 x. ( ( 2 x. 4 ) + 1 ) ) x. ( 9 ^ 4 ) ) ) e. RR | 
						
							| 22 | 9 21 | elicc2i |  |-  ( ( ( log ` 2 ) - sum_ n e. ( 0 ... 3 ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) e. ( 0 [,] ( 3 / ( ( 4 x. ( ( 2 x. 4 ) + 1 ) ) x. ( 9 ^ 4 ) ) ) ) <-> ( ( ( log ` 2 ) - sum_ n e. ( 0 ... 3 ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) e. RR /\ 0 <_ ( ( log ` 2 ) - sum_ n e. ( 0 ... 3 ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) /\ ( ( log ` 2 ) - sum_ n e. ( 0 ... 3 ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) <_ ( 3 / ( ( 4 x. ( ( 2 x. 4 ) + 1 ) ) x. ( 9 ^ 4 ) ) ) ) ) | 
						
							| 23 | 8 22 | mpbi |  |-  ( ( ( log ` 2 ) - sum_ n e. ( 0 ... 3 ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) e. RR /\ 0 <_ ( ( log ` 2 ) - sum_ n e. ( 0 ... 3 ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) /\ ( ( log ` 2 ) - sum_ n e. ( 0 ... 3 ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) <_ ( 3 / ( ( 4 x. ( ( 2 x. 4 ) + 1 ) ) x. ( 9 ^ 4 ) ) ) ) | 
						
							| 24 | 23 | simp3i |  |-  ( ( log ` 2 ) - sum_ n e. ( 0 ... 3 ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) <_ ( 3 / ( ( 4 x. ( ( 2 x. 4 ) + 1 ) ) x. ( 9 ^ 4 ) ) ) | 
						
							| 25 |  | 2rp |  |-  2 e. RR+ | 
						
							| 26 |  | relogcl |  |-  ( 2 e. RR+ -> ( log ` 2 ) e. RR ) | 
						
							| 27 | 25 26 | ax-mp |  |-  ( log ` 2 ) e. RR | 
						
							| 28 |  | fzfid |  |-  ( T. -> ( 0 ... 3 ) e. Fin ) | 
						
							| 29 |  | 2re |  |-  2 e. RR | 
						
							| 30 |  | 3nn |  |-  3 e. NN | 
						
							| 31 |  | elfznn0 |  |-  ( n e. ( 0 ... 3 ) -> n e. NN0 ) | 
						
							| 32 | 31 | adantl |  |-  ( ( T. /\ n e. ( 0 ... 3 ) ) -> n e. NN0 ) | 
						
							| 33 |  | nn0mulcl |  |-  ( ( 2 e. NN0 /\ n e. NN0 ) -> ( 2 x. n ) e. NN0 ) | 
						
							| 34 | 12 32 33 | sylancr |  |-  ( ( T. /\ n e. ( 0 ... 3 ) ) -> ( 2 x. n ) e. NN0 ) | 
						
							| 35 |  | nn0p1nn |  |-  ( ( 2 x. n ) e. NN0 -> ( ( 2 x. n ) + 1 ) e. NN ) | 
						
							| 36 | 34 35 | syl |  |-  ( ( T. /\ n e. ( 0 ... 3 ) ) -> ( ( 2 x. n ) + 1 ) e. NN ) | 
						
							| 37 |  | nnmulcl |  |-  ( ( 3 e. NN /\ ( ( 2 x. n ) + 1 ) e. NN ) -> ( 3 x. ( ( 2 x. n ) + 1 ) ) e. NN ) | 
						
							| 38 | 30 36 37 | sylancr |  |-  ( ( T. /\ n e. ( 0 ... 3 ) ) -> ( 3 x. ( ( 2 x. n ) + 1 ) ) e. NN ) | 
						
							| 39 |  | nnexpcl |  |-  ( ( 9 e. NN /\ n e. NN0 ) -> ( 9 ^ n ) e. NN ) | 
						
							| 40 | 16 32 39 | sylancr |  |-  ( ( T. /\ n e. ( 0 ... 3 ) ) -> ( 9 ^ n ) e. NN ) | 
						
							| 41 | 38 40 | nnmulcld |  |-  ( ( T. /\ n e. ( 0 ... 3 ) ) -> ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) e. NN ) | 
						
							| 42 |  | nndivre |  |-  ( ( 2 e. RR /\ ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) e. NN ) -> ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) e. RR ) | 
						
							| 43 | 29 41 42 | sylancr |  |-  ( ( T. /\ n e. ( 0 ... 3 ) ) -> ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) e. RR ) | 
						
							| 44 | 28 43 | fsumrecl |  |-  ( T. -> sum_ n e. ( 0 ... 3 ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) e. RR ) | 
						
							| 45 | 44 | mptru |  |-  sum_ n e. ( 0 ... 3 ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) e. RR | 
						
							| 46 | 27 45 21 | lesubadd2i |  |-  ( ( ( log ` 2 ) - sum_ n e. ( 0 ... 3 ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) <_ ( 3 / ( ( 4 x. ( ( 2 x. 4 ) + 1 ) ) x. ( 9 ^ 4 ) ) ) <-> ( log ` 2 ) <_ ( sum_ n e. ( 0 ... 3 ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) + ( 3 / ( ( 4 x. ( ( 2 x. 4 ) + 1 ) ) x. ( 9 ^ 4 ) ) ) ) ) | 
						
							| 47 | 24 46 | mpbi |  |-  ( log ` 2 ) <_ ( sum_ n e. ( 0 ... 3 ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) + ( 3 / ( ( 4 x. ( ( 2 x. 4 ) + 1 ) ) x. ( 9 ^ 4 ) ) ) ) | 
						
							| 48 |  | log2ublem3 |  |-  ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. sum_ n e. ( 0 ... 3 ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) <_ ; ; ; ; 5 3 0 5 6 | 
						
							| 49 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 50 |  | 5nn0 |  |-  5 e. NN0 | 
						
							| 51 | 50 49 | deccl |  |-  ; 5 3 e. NN0 | 
						
							| 52 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 53 | 51 52 | deccl |  |-  ; ; 5 3 0 e. NN0 | 
						
							| 54 | 53 50 | deccl |  |-  ; ; ; 5 3 0 5 e. NN0 | 
						
							| 55 |  | 6nn0 |  |-  6 e. NN0 | 
						
							| 56 | 54 55 | deccl |  |-  ; ; ; ; 5 3 0 5 6 e. NN0 | 
						
							| 57 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 58 |  | eqid |  |-  ( sum_ n e. ( 0 ... 3 ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) + ( 3 / ( ( 4 x. ( ( 2 x. 4 ) + 1 ) ) x. ( 9 ^ 4 ) ) ) ) = ( sum_ n e. ( 0 ... 3 ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) + ( 3 / ( ( 4 x. ( ( 2 x. 4 ) + 1 ) ) x. ( 9 ^ 4 ) ) ) ) | 
						
							| 59 |  | 6p1e7 |  |-  ( 6 + 1 ) = 7 | 
						
							| 60 |  | eqid |  |-  ; ; ; ; 5 3 0 5 6 = ; ; ; ; 5 3 0 5 6 | 
						
							| 61 | 54 55 59 60 | decsuc |  |-  ( ; ; ; ; 5 3 0 5 6 + 1 ) = ; ; ; ; 5 3 0 5 7 | 
						
							| 62 |  | 5nn |  |-  5 e. NN | 
						
							| 63 |  | 7nn |  |-  7 e. NN | 
						
							| 64 | 62 63 | nnmulcli |  |-  ( 5 x. 7 ) e. NN | 
						
							| 65 | 64 | nnrei |  |-  ( 5 x. 7 ) e. RR | 
						
							| 66 | 15 | nnrei |  |-  ( 4 x. ( ( 2 x. 4 ) + 1 ) ) e. RR | 
						
							| 67 |  | 6nn |  |-  6 e. NN | 
						
							| 68 |  | 5lt6 |  |-  5 < 6 | 
						
							| 69 | 49 50 67 68 | declt |  |-  ; 3 5 < ; 3 6 | 
						
							| 70 |  | 7cn |  |-  7 e. CC | 
						
							| 71 |  | 5cn |  |-  5 e. CC | 
						
							| 72 |  | 7t5e35 |  |-  ( 7 x. 5 ) = ; 3 5 | 
						
							| 73 | 70 71 72 | mulcomli |  |-  ( 5 x. 7 ) = ; 3 5 | 
						
							| 74 |  | 4cn |  |-  4 e. CC | 
						
							| 75 |  | 2cn |  |-  2 e. CC | 
						
							| 76 |  | 4t2e8 |  |-  ( 4 x. 2 ) = 8 | 
						
							| 77 | 74 75 76 | mulcomli |  |-  ( 2 x. 4 ) = 8 | 
						
							| 78 | 77 | oveq1i |  |-  ( ( 2 x. 4 ) + 1 ) = ( 8 + 1 ) | 
						
							| 79 |  | 8p1e9 |  |-  ( 8 + 1 ) = 9 | 
						
							| 80 | 78 79 | eqtri |  |-  ( ( 2 x. 4 ) + 1 ) = 9 | 
						
							| 81 | 80 | oveq2i |  |-  ( 4 x. ( ( 2 x. 4 ) + 1 ) ) = ( 4 x. 9 ) | 
						
							| 82 |  | 9cn |  |-  9 e. CC | 
						
							| 83 |  | 9t4e36 |  |-  ( 9 x. 4 ) = ; 3 6 | 
						
							| 84 | 82 74 83 | mulcomli |  |-  ( 4 x. 9 ) = ; 3 6 | 
						
							| 85 | 81 84 | eqtri |  |-  ( 4 x. ( ( 2 x. 4 ) + 1 ) ) = ; 3 6 | 
						
							| 86 | 69 73 85 | 3brtr4i |  |-  ( 5 x. 7 ) < ( 4 x. ( ( 2 x. 4 ) + 1 ) ) | 
						
							| 87 | 65 66 86 | ltleii |  |-  ( 5 x. 7 ) <_ ( 4 x. ( ( 2 x. 4 ) + 1 ) ) | 
						
							| 88 | 18 | nngt0i |  |-  0 < ( 9 ^ 4 ) | 
						
							| 89 | 18 | nnrei |  |-  ( 9 ^ 4 ) e. RR | 
						
							| 90 | 65 66 89 | lemul2i |  |-  ( 0 < ( 9 ^ 4 ) -> ( ( 5 x. 7 ) <_ ( 4 x. ( ( 2 x. 4 ) + 1 ) ) <-> ( ( 9 ^ 4 ) x. ( 5 x. 7 ) ) <_ ( ( 9 ^ 4 ) x. ( 4 x. ( ( 2 x. 4 ) + 1 ) ) ) ) ) | 
						
							| 91 | 88 90 | ax-mp |  |-  ( ( 5 x. 7 ) <_ ( 4 x. ( ( 2 x. 4 ) + 1 ) ) <-> ( ( 9 ^ 4 ) x. ( 5 x. 7 ) ) <_ ( ( 9 ^ 4 ) x. ( 4 x. ( ( 2 x. 4 ) + 1 ) ) ) ) | 
						
							| 92 | 87 91 | mpbi |  |-  ( ( 9 ^ 4 ) x. ( 5 x. 7 ) ) <_ ( ( 9 ^ 4 ) x. ( 4 x. ( ( 2 x. 4 ) + 1 ) ) ) | 
						
							| 93 |  | 7nn0 |  |-  7 e. NN0 | 
						
							| 94 |  | nnexpcl |  |-  ( ( 3 e. NN /\ 7 e. NN0 ) -> ( 3 ^ 7 ) e. NN ) | 
						
							| 95 | 30 93 94 | mp2an |  |-  ( 3 ^ 7 ) e. NN | 
						
							| 96 | 95 | nncni |  |-  ( 3 ^ 7 ) e. CC | 
						
							| 97 | 64 | nncni |  |-  ( 5 x. 7 ) e. CC | 
						
							| 98 |  | 3cn |  |-  3 e. CC | 
						
							| 99 | 96 97 98 | mul32i |  |-  ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. 3 ) = ( ( ( 3 ^ 7 ) x. 3 ) x. ( 5 x. 7 ) ) | 
						
							| 100 | 74 75 | mulcomi |  |-  ( 4 x. 2 ) = ( 2 x. 4 ) | 
						
							| 101 |  | df-8 |  |-  8 = ( 7 + 1 ) | 
						
							| 102 | 76 100 101 | 3eqtr3i |  |-  ( 2 x. 4 ) = ( 7 + 1 ) | 
						
							| 103 | 102 | oveq2i |  |-  ( 3 ^ ( 2 x. 4 ) ) = ( 3 ^ ( 7 + 1 ) ) | 
						
							| 104 |  | expmul |  |-  ( ( 3 e. CC /\ 2 e. NN0 /\ 4 e. NN0 ) -> ( 3 ^ ( 2 x. 4 ) ) = ( ( 3 ^ 2 ) ^ 4 ) ) | 
						
							| 105 | 98 12 5 104 | mp3an |  |-  ( 3 ^ ( 2 x. 4 ) ) = ( ( 3 ^ 2 ) ^ 4 ) | 
						
							| 106 | 103 105 | eqtr3i |  |-  ( 3 ^ ( 7 + 1 ) ) = ( ( 3 ^ 2 ) ^ 4 ) | 
						
							| 107 |  | expp1 |  |-  ( ( 3 e. CC /\ 7 e. NN0 ) -> ( 3 ^ ( 7 + 1 ) ) = ( ( 3 ^ 7 ) x. 3 ) ) | 
						
							| 108 | 98 93 107 | mp2an |  |-  ( 3 ^ ( 7 + 1 ) ) = ( ( 3 ^ 7 ) x. 3 ) | 
						
							| 109 |  | sq3 |  |-  ( 3 ^ 2 ) = 9 | 
						
							| 110 | 109 | oveq1i |  |-  ( ( 3 ^ 2 ) ^ 4 ) = ( 9 ^ 4 ) | 
						
							| 111 | 106 108 110 | 3eqtr3i |  |-  ( ( 3 ^ 7 ) x. 3 ) = ( 9 ^ 4 ) | 
						
							| 112 | 111 | oveq1i |  |-  ( ( ( 3 ^ 7 ) x. 3 ) x. ( 5 x. 7 ) ) = ( ( 9 ^ 4 ) x. ( 5 x. 7 ) ) | 
						
							| 113 | 99 112 | eqtri |  |-  ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. 3 ) = ( ( 9 ^ 4 ) x. ( 5 x. 7 ) ) | 
						
							| 114 | 15 | nncni |  |-  ( 4 x. ( ( 2 x. 4 ) + 1 ) ) e. CC | 
						
							| 115 | 18 | nncni |  |-  ( 9 ^ 4 ) e. CC | 
						
							| 116 | 114 115 | mulcomi |  |-  ( ( 4 x. ( ( 2 x. 4 ) + 1 ) ) x. ( 9 ^ 4 ) ) = ( ( 9 ^ 4 ) x. ( 4 x. ( ( 2 x. 4 ) + 1 ) ) ) | 
						
							| 117 | 116 | oveq1i |  |-  ( ( ( 4 x. ( ( 2 x. 4 ) + 1 ) ) x. ( 9 ^ 4 ) ) x. 1 ) = ( ( ( 9 ^ 4 ) x. ( 4 x. ( ( 2 x. 4 ) + 1 ) ) ) x. 1 ) | 
						
							| 118 | 115 114 | mulcli |  |-  ( ( 9 ^ 4 ) x. ( 4 x. ( ( 2 x. 4 ) + 1 ) ) ) e. CC | 
						
							| 119 | 118 | mulridi |  |-  ( ( ( 9 ^ 4 ) x. ( 4 x. ( ( 2 x. 4 ) + 1 ) ) ) x. 1 ) = ( ( 9 ^ 4 ) x. ( 4 x. ( ( 2 x. 4 ) + 1 ) ) ) | 
						
							| 120 | 117 119 | eqtri |  |-  ( ( ( 4 x. ( ( 2 x. 4 ) + 1 ) ) x. ( 9 ^ 4 ) ) x. 1 ) = ( ( 9 ^ 4 ) x. ( 4 x. ( ( 2 x. 4 ) + 1 ) ) ) | 
						
							| 121 | 92 113 120 | 3brtr4i |  |-  ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. 3 ) <_ ( ( ( 4 x. ( ( 2 x. 4 ) + 1 ) ) x. ( 9 ^ 4 ) ) x. 1 ) | 
						
							| 122 | 48 45 49 19 56 57 58 61 121 | log2ublem1 |  |-  ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. ( sum_ n e. ( 0 ... 3 ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) + ( 3 / ( ( 4 x. ( ( 2 x. 4 ) + 1 ) ) x. ( 9 ^ 4 ) ) ) ) ) <_ ; ; ; ; 5 3 0 5 7 | 
						
							| 123 | 45 21 | readdcli |  |-  ( sum_ n e. ( 0 ... 3 ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) + ( 3 / ( ( 4 x. ( ( 2 x. 4 ) + 1 ) ) x. ( 9 ^ 4 ) ) ) ) e. RR | 
						
							| 124 | 54 93 | deccl |  |-  ; ; ; ; 5 3 0 5 7 e. NN0 | 
						
							| 125 | 124 | nn0rei |  |-  ; ; ; ; 5 3 0 5 7 e. RR | 
						
							| 126 | 95 64 | nnmulcli |  |-  ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) e. NN | 
						
							| 127 | 126 | nnrei |  |-  ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) e. RR | 
						
							| 128 | 126 | nngt0i |  |-  0 < ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) | 
						
							| 129 | 127 128 | pm3.2i |  |-  ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) e. RR /\ 0 < ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) ) | 
						
							| 130 |  | lemuldiv2 |  |-  ( ( ( sum_ n e. ( 0 ... 3 ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) + ( 3 / ( ( 4 x. ( ( 2 x. 4 ) + 1 ) ) x. ( 9 ^ 4 ) ) ) ) e. RR /\ ; ; ; ; 5 3 0 5 7 e. RR /\ ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) e. RR /\ 0 < ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) ) ) -> ( ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. ( sum_ n e. ( 0 ... 3 ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) + ( 3 / ( ( 4 x. ( ( 2 x. 4 ) + 1 ) ) x. ( 9 ^ 4 ) ) ) ) ) <_ ; ; ; ; 5 3 0 5 7 <-> ( sum_ n e. ( 0 ... 3 ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) + ( 3 / ( ( 4 x. ( ( 2 x. 4 ) + 1 ) ) x. ( 9 ^ 4 ) ) ) ) <_ ( ; ; ; ; 5 3 0 5 7 / ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) ) ) ) | 
						
							| 131 | 123 125 129 130 | mp3an |  |-  ( ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. ( sum_ n e. ( 0 ... 3 ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) + ( 3 / ( ( 4 x. ( ( 2 x. 4 ) + 1 ) ) x. ( 9 ^ 4 ) ) ) ) ) <_ ; ; ; ; 5 3 0 5 7 <-> ( sum_ n e. ( 0 ... 3 ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) + ( 3 / ( ( 4 x. ( ( 2 x. 4 ) + 1 ) ) x. ( 9 ^ 4 ) ) ) ) <_ ( ; ; ; ; 5 3 0 5 7 / ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) ) ) | 
						
							| 132 | 122 131 | mpbi |  |-  ( sum_ n e. ( 0 ... 3 ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) + ( 3 / ( ( 4 x. ( ( 2 x. 4 ) + 1 ) ) x. ( 9 ^ 4 ) ) ) ) <_ ( ; ; ; ; 5 3 0 5 7 / ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) ) | 
						
							| 133 |  | 8nn0 |  |-  8 e. NN0 | 
						
							| 134 | 49 133 | deccl |  |-  ; 3 8 e. NN0 | 
						
							| 135 | 134 93 | deccl |  |-  ; ; 3 8 7 e. NN0 | 
						
							| 136 | 135 49 | deccl |  |-  ; ; ; 3 8 7 3 e. NN0 | 
						
							| 137 | 136 57 | deccl |  |-  ; ; ; ; 3 8 7 3 1 e. NN0 | 
						
							| 138 | 137 55 | deccl |  |-  ; ; ; ; ; 3 8 7 3 1 6 e. NN0 | 
						
							| 139 | 137 93 | deccl |  |-  ; ; ; ; ; 3 8 7 3 1 7 e. NN0 | 
						
							| 140 |  | 1lt10 |  |-  1 < ; 1 0 | 
						
							| 141 |  | 6lt7 |  |-  6 < 7 | 
						
							| 142 | 137 55 63 141 | declt |  |-  ; ; ; ; ; 3 8 7 3 1 6 < ; ; ; ; ; 3 8 7 3 1 7 | 
						
							| 143 | 138 139 57 93 140 142 | decltc |  |-  ; ; ; ; ; ; 3 8 7 3 1 6 1 < ; ; ; ; ; ; 3 8 7 3 1 7 7 | 
						
							| 144 |  | eqid |  |-  ; 7 3 = ; 7 3 | 
						
							| 145 | 57 50 | deccl |  |-  ; 1 5 e. NN0 | 
						
							| 146 |  | 9nn0 |  |-  9 e. NN0 | 
						
							| 147 | 145 146 | deccl |  |-  ; ; 1 5 9 e. NN0 | 
						
							| 148 | 147 57 | deccl |  |-  ; ; ; 1 5 9 1 e. NN0 | 
						
							| 149 | 148 93 | deccl |  |-  ; ; ; ; 1 5 9 1 7 e. NN0 | 
						
							| 150 |  | eqid |  |-  ; ; ; ; 5 3 0 5 7 = ; ; ; ; 5 3 0 5 7 | 
						
							| 151 |  | eqid |  |-  ; ; ; ; 1 5 9 1 7 = ; ; ; ; 1 5 9 1 7 | 
						
							| 152 |  | eqid |  |-  ; ; ; 5 3 0 5 = ; ; ; 5 3 0 5 | 
						
							| 153 |  | eqid |  |-  ; ; ; 1 5 9 1 = ; ; ; 1 5 9 1 | 
						
							| 154 |  | ax-1cn |  |-  1 e. CC | 
						
							| 155 |  | 5p1e6 |  |-  ( 5 + 1 ) = 6 | 
						
							| 156 | 71 154 155 | addcomli |  |-  ( 1 + 5 ) = 6 | 
						
							| 157 | 147 57 50 153 156 | decaddi |  |-  ( ; ; ; 1 5 9 1 + 5 ) = ; ; ; 1 5 9 6 | 
						
							| 158 | 57 55 | deccl |  |-  ; 1 6 e. NN0 | 
						
							| 159 |  | eqid |  |-  ; ; 5 3 0 = ; ; 5 3 0 | 
						
							| 160 |  | eqid |  |-  ; ; 1 5 9 = ; ; 1 5 9 | 
						
							| 161 |  | eqid |  |-  ; 1 5 = ; 1 5 | 
						
							| 162 | 57 50 155 161 | decsuc |  |-  ( ; 1 5 + 1 ) = ; 1 6 | 
						
							| 163 |  | 9p4e13 |  |-  ( 9 + 4 ) = ; 1 3 | 
						
							| 164 | 145 146 5 160 162 49 163 | decaddci |  |-  ( ; ; 1 5 9 + 4 ) = ; ; 1 6 3 | 
						
							| 165 |  | eqid |  |-  ; 5 3 = ; 5 3 | 
						
							| 166 | 158 | nn0cni |  |-  ; 1 6 e. CC | 
						
							| 167 | 166 | addridi |  |-  ( ; 1 6 + 0 ) = ; 1 6 | 
						
							| 168 |  | 1p2e3 |  |-  ( 1 + 2 ) = 3 | 
						
							| 169 | 168 | oveq2i |  |-  ( ( 5 x. 7 ) + ( 1 + 2 ) ) = ( ( 5 x. 7 ) + 3 ) | 
						
							| 170 |  | 5p3e8 |  |-  ( 5 + 3 ) = 8 | 
						
							| 171 | 49 50 49 73 170 | decaddi |  |-  ( ( 5 x. 7 ) + 3 ) = ; 3 8 | 
						
							| 172 | 169 171 | eqtri |  |-  ( ( 5 x. 7 ) + ( 1 + 2 ) ) = ; 3 8 | 
						
							| 173 |  | 7t3e21 |  |-  ( 7 x. 3 ) = ; 2 1 | 
						
							| 174 | 70 98 173 | mulcomli |  |-  ( 3 x. 7 ) = ; 2 1 | 
						
							| 175 |  | 6cn |  |-  6 e. CC | 
						
							| 176 | 175 154 59 | addcomli |  |-  ( 1 + 6 ) = 7 | 
						
							| 177 | 12 57 55 174 176 | decaddi |  |-  ( ( 3 x. 7 ) + 6 ) = ; 2 7 | 
						
							| 178 | 50 49 57 55 165 167 93 93 12 172 177 | decmac |  |-  ( ( ; 5 3 x. 7 ) + ( ; 1 6 + 0 ) ) = ; ; 3 8 7 | 
						
							| 179 | 70 | mul02i |  |-  ( 0 x. 7 ) = 0 | 
						
							| 180 | 179 | oveq1i |  |-  ( ( 0 x. 7 ) + 3 ) = ( 0 + 3 ) | 
						
							| 181 | 98 | addlidi |  |-  ( 0 + 3 ) = 3 | 
						
							| 182 | 49 | dec0h |  |-  3 = ; 0 3 | 
						
							| 183 | 181 182 | eqtri |  |-  ( 0 + 3 ) = ; 0 3 | 
						
							| 184 | 180 183 | eqtri |  |-  ( ( 0 x. 7 ) + 3 ) = ; 0 3 | 
						
							| 185 | 51 52 158 49 159 164 93 49 52 178 184 | decmac |  |-  ( ( ; ; 5 3 0 x. 7 ) + ( ; ; 1 5 9 + 4 ) ) = ; ; ; 3 8 7 3 | 
						
							| 186 |  | 3p1e4 |  |-  ( 3 + 1 ) = 4 | 
						
							| 187 |  | 6p5e11 |  |-  ( 6 + 5 ) = ; 1 1 | 
						
							| 188 | 175 71 187 | addcomli |  |-  ( 5 + 6 ) = ; 1 1 | 
						
							| 189 | 49 50 55 73 186 57 188 | decaddci |  |-  ( ( 5 x. 7 ) + 6 ) = ; 4 1 | 
						
							| 190 | 53 50 147 55 152 157 93 57 5 185 189 | decmac |  |-  ( ( ; ; ; 5 3 0 5 x. 7 ) + ( ; ; ; 1 5 9 1 + 5 ) ) = ; ; ; ; 3 8 7 3 1 | 
						
							| 191 |  | 7t7e49 |  |-  ( 7 x. 7 ) = ; 4 9 | 
						
							| 192 |  | 4p1e5 |  |-  ( 4 + 1 ) = 5 | 
						
							| 193 |  | 9p7e16 |  |-  ( 9 + 7 ) = ; 1 6 | 
						
							| 194 | 5 146 93 191 192 55 193 | decaddci |  |-  ( ( 7 x. 7 ) + 7 ) = ; 5 6 | 
						
							| 195 | 54 93 148 93 150 151 93 55 50 190 194 | decmac |  |-  ( ( ; ; ; ; 5 3 0 5 7 x. 7 ) + ; ; ; ; 1 5 9 1 7 ) = ; ; ; ; ; 3 8 7 3 1 6 | 
						
							| 196 | 12 | dec0h |  |-  2 = ; 0 2 | 
						
							| 197 | 154 | addlidi |  |-  ( 0 + 1 ) = 1 | 
						
							| 198 | 57 | dec0h |  |-  1 = ; 0 1 | 
						
							| 199 | 197 198 | eqtri |  |-  ( 0 + 1 ) = ; 0 1 | 
						
							| 200 |  | 00id |  |-  ( 0 + 0 ) = 0 | 
						
							| 201 | 52 | dec0h |  |-  0 = ; 0 0 | 
						
							| 202 | 200 201 | eqtri |  |-  ( 0 + 0 ) = ; 0 0 | 
						
							| 203 |  | 5t3e15 |  |-  ( 5 x. 3 ) = ; 1 5 | 
						
							| 204 | 203 | oveq1i |  |-  ( ( 5 x. 3 ) + 0 ) = ( ; 1 5 + 0 ) | 
						
							| 205 | 145 | nn0cni |  |-  ; 1 5 e. CC | 
						
							| 206 | 205 | addridi |  |-  ( ; 1 5 + 0 ) = ; 1 5 | 
						
							| 207 | 204 206 | eqtri |  |-  ( ( 5 x. 3 ) + 0 ) = ; 1 5 | 
						
							| 208 |  | 3t3e9 |  |-  ( 3 x. 3 ) = 9 | 
						
							| 209 | 208 | oveq1i |  |-  ( ( 3 x. 3 ) + 0 ) = ( 9 + 0 ) | 
						
							| 210 | 82 | addridi |  |-  ( 9 + 0 ) = 9 | 
						
							| 211 | 209 210 | eqtri |  |-  ( ( 3 x. 3 ) + 0 ) = 9 | 
						
							| 212 | 50 49 52 52 165 202 49 207 211 | decma |  |-  ( ( ; 5 3 x. 3 ) + ( 0 + 0 ) ) = ; ; 1 5 9 | 
						
							| 213 | 98 | mul02i |  |-  ( 0 x. 3 ) = 0 | 
						
							| 214 | 213 | oveq1i |  |-  ( ( 0 x. 3 ) + 1 ) = ( 0 + 1 ) | 
						
							| 215 | 214 199 | eqtri |  |-  ( ( 0 x. 3 ) + 1 ) = ; 0 1 | 
						
							| 216 | 51 52 52 57 159 199 49 57 52 212 215 | decmac |  |-  ( ( ; ; 5 3 0 x. 3 ) + ( 0 + 1 ) ) = ; ; ; 1 5 9 1 | 
						
							| 217 |  | 5p2e7 |  |-  ( 5 + 2 ) = 7 | 
						
							| 218 | 57 50 12 203 217 | decaddi |  |-  ( ( 5 x. 3 ) + 2 ) = ; 1 7 | 
						
							| 219 | 53 50 52 12 152 196 49 93 57 216 218 | decmac |  |-  ( ( ; ; ; 5 3 0 5 x. 3 ) + 2 ) = ; ; ; ; 1 5 9 1 7 | 
						
							| 220 | 49 54 93 150 57 12 219 173 | decmul1c |  |-  ( ; ; ; ; 5 3 0 5 7 x. 3 ) = ; ; ; ; ; 1 5 9 1 7 1 | 
						
							| 221 | 124 93 49 144 57 149 195 220 | decmul2c |  |-  ( ; ; ; ; 5 3 0 5 7 x. ; 7 3 ) = ; ; ; ; ; ; 3 8 7 3 1 6 1 | 
						
							| 222 | 50 50 | deccl |  |-  ; 5 5 e. NN0 | 
						
							| 223 | 222 49 | deccl |  |-  ; ; 5 5 3 e. NN0 | 
						
							| 224 | 223 49 | deccl |  |-  ; ; ; 5 5 3 3 e. NN0 | 
						
							| 225 | 224 57 | deccl |  |-  ; ; ; ; 5 5 3 3 1 e. NN0 | 
						
							| 226 | 12 50 | deccl |  |-  ; 2 5 e. NN0 | 
						
							| 227 | 226 49 | deccl |  |-  ; ; 2 5 3 e. NN0 | 
						
							| 228 | 12 57 | deccl |  |-  ; 2 1 e. NN0 | 
						
							| 229 | 228 133 | deccl |  |-  ; ; 2 1 8 e. NN0 | 
						
							| 230 | 93 12 | deccl |  |-  ; 7 2 e. NN0 | 
						
							| 231 |  | 3t2e6 |  |-  ( 3 x. 2 ) = 6 | 
						
							| 232 | 98 75 231 | mulcomli |  |-  ( 2 x. 3 ) = 6 | 
						
							| 233 |  | 3exp3 |  |-  ( 3 ^ 3 ) = ; 2 7 | 
						
							| 234 | 12 93 | deccl |  |-  ; 2 7 e. NN0 | 
						
							| 235 |  | eqid |  |-  ; 2 7 = ; 2 7 | 
						
							| 236 | 57 133 | deccl |  |-  ; 1 8 e. NN0 | 
						
							| 237 |  | eqid |  |-  ; 1 8 = ; 1 8 | 
						
							| 238 |  | 2t2e4 |  |-  ( 2 x. 2 ) = 4 | 
						
							| 239 | 238 168 | oveq12i |  |-  ( ( 2 x. 2 ) + ( 1 + 2 ) ) = ( 4 + 3 ) | 
						
							| 240 |  | 4p3e7 |  |-  ( 4 + 3 ) = 7 | 
						
							| 241 | 239 240 | eqtri |  |-  ( ( 2 x. 2 ) + ( 1 + 2 ) ) = 7 | 
						
							| 242 |  | 7t2e14 |  |-  ( 7 x. 2 ) = ; 1 4 | 
						
							| 243 |  | 1p1e2 |  |-  ( 1 + 1 ) = 2 | 
						
							| 244 |  | 8cn |  |-  8 e. CC | 
						
							| 245 |  | 8p4e12 |  |-  ( 8 + 4 ) = ; 1 2 | 
						
							| 246 | 244 74 245 | addcomli |  |-  ( 4 + 8 ) = ; 1 2 | 
						
							| 247 | 57 5 133 242 243 12 246 | decaddci |  |-  ( ( 7 x. 2 ) + 8 ) = ; 2 2 | 
						
							| 248 | 12 93 57 133 235 237 12 12 12 241 247 | decmac |  |-  ( ( ; 2 7 x. 2 ) + ; 1 8 ) = ; 7 2 | 
						
							| 249 | 70 75 242 | mulcomli |  |-  ( 2 x. 7 ) = ; 1 4 | 
						
							| 250 |  | 4p4e8 |  |-  ( 4 + 4 ) = 8 | 
						
							| 251 | 57 5 5 249 250 | decaddi |  |-  ( ( 2 x. 7 ) + 4 ) = ; 1 8 | 
						
							| 252 | 93 12 93 235 146 5 251 191 | decmul1c |  |-  ( ; 2 7 x. 7 ) = ; ; 1 8 9 | 
						
							| 253 | 234 12 93 235 146 236 248 252 | decmul2c |  |-  ( ; 2 7 x. ; 2 7 ) = ; ; 7 2 9 | 
						
							| 254 | 49 49 232 233 253 | numexp2x |  |-  ( 3 ^ 6 ) = ; ; 7 2 9 | 
						
							| 255 |  | eqid |  |-  ; 7 2 = ; 7 2 | 
						
							| 256 | 232 | oveq1i |  |-  ( ( 2 x. 3 ) + 2 ) = ( 6 + 2 ) | 
						
							| 257 |  | 6p2e8 |  |-  ( 6 + 2 ) = 8 | 
						
							| 258 | 256 257 | eqtri |  |-  ( ( 2 x. 3 ) + 2 ) = 8 | 
						
							| 259 | 93 12 12 255 49 173 258 | decrmanc |  |-  ( ( ; 7 2 x. 3 ) + 2 ) = ; ; 2 1 8 | 
						
							| 260 |  | 9t3e27 |  |-  ( 9 x. 3 ) = ; 2 7 | 
						
							| 261 | 49 230 146 254 93 12 259 260 | decmul1c |  |-  ( ( 3 ^ 6 ) x. 3 ) = ; ; ; 2 1 8 7 | 
						
							| 262 | 49 55 59 261 | numexpp1 |  |-  ( 3 ^ 7 ) = ; ; ; 2 1 8 7 | 
						
							| 263 | 57 93 | deccl |  |-  ; 1 7 e. NN0 | 
						
							| 264 | 263 93 | deccl |  |-  ; ; 1 7 7 e. NN0 | 
						
							| 265 |  | eqid |  |-  ; ; 2 1 8 = ; ; 2 1 8 | 
						
							| 266 |  | eqid |  |-  ; ; 1 7 7 = ; ; 1 7 7 | 
						
							| 267 | 12 52 | deccl |  |-  ; 2 0 e. NN0 | 
						
							| 268 | 267 49 | deccl |  |-  ; ; 2 0 3 e. NN0 | 
						
							| 269 | 12 12 | deccl |  |-  ; 2 2 e. NN0 | 
						
							| 270 |  | eqid |  |-  ; 2 1 = ; 2 1 | 
						
							| 271 |  | eqid |  |-  ; 1 7 = ; 1 7 | 
						
							| 272 |  | eqid |  |-  ; ; 2 0 3 = ; ; 2 0 3 | 
						
							| 273 |  | eqid |  |-  ; 2 0 = ; 2 0 | 
						
							| 274 | 75 | addlidi |  |-  ( 0 + 2 ) = 2 | 
						
							| 275 | 154 | addridi |  |-  ( 1 + 0 ) = 1 | 
						
							| 276 | 52 57 12 52 198 273 274 275 | decadd |  |-  ( 1 + ; 2 0 ) = ; 2 1 | 
						
							| 277 | 12 57 243 276 | decsuc |  |-  ( ( 1 + ; 2 0 ) + 1 ) = ; 2 2 | 
						
							| 278 |  | 7p3e10 |  |-  ( 7 + 3 ) = ; 1 0 | 
						
							| 279 | 57 93 267 49 271 272 277 278 | decaddc2 |  |-  ( ; 1 7 + ; ; 2 0 3 ) = ; ; 2 2 0 | 
						
							| 280 |  | eqid |  |-  ; ; 2 5 3 = ; ; 2 5 3 | 
						
							| 281 |  | eqid |  |-  ; 2 2 = ; 2 2 | 
						
							| 282 |  | eqid |  |-  ; 2 5 = ; 2 5 | 
						
							| 283 |  | 2p2e4 |  |-  ( 2 + 2 ) = 4 | 
						
							| 284 | 71 75 217 | addcomli |  |-  ( 2 + 5 ) = 7 | 
						
							| 285 | 12 12 12 50 281 282 283 284 | decadd |  |-  ( ; 2 2 + ; 2 5 ) = ; 4 7 | 
						
							| 286 | 50 | dec0h |  |-  5 = ; 0 5 | 
						
							| 287 | 192 286 | eqtri |  |-  ( 4 + 1 ) = ; 0 5 | 
						
							| 288 | 238 197 | oveq12i |  |-  ( ( 2 x. 2 ) + ( 0 + 1 ) ) = ( 4 + 1 ) | 
						
							| 289 | 288 192 | eqtri |  |-  ( ( 2 x. 2 ) + ( 0 + 1 ) ) = 5 | 
						
							| 290 |  | 5t2e10 |  |-  ( 5 x. 2 ) = ; 1 0 | 
						
							| 291 | 71 | addlidi |  |-  ( 0 + 5 ) = 5 | 
						
							| 292 | 57 52 50 290 291 | decaddi |  |-  ( ( 5 x. 2 ) + 5 ) = ; 1 5 | 
						
							| 293 | 12 50 52 50 282 287 12 50 57 289 292 | decmac |  |-  ( ( ; 2 5 x. 2 ) + ( 4 + 1 ) ) = ; 5 5 | 
						
							| 294 | 231 | oveq1i |  |-  ( ( 3 x. 2 ) + 7 ) = ( 6 + 7 ) | 
						
							| 295 |  | 7p6e13 |  |-  ( 7 + 6 ) = ; 1 3 | 
						
							| 296 | 70 175 295 | addcomli |  |-  ( 6 + 7 ) = ; 1 3 | 
						
							| 297 | 294 296 | eqtri |  |-  ( ( 3 x. 2 ) + 7 ) = ; 1 3 | 
						
							| 298 | 226 49 5 93 280 285 12 49 57 293 297 | decmac |  |-  ( ( ; ; 2 5 3 x. 2 ) + ( ; 2 2 + ; 2 5 ) ) = ; ; 5 5 3 | 
						
							| 299 | 227 | nn0cni |  |-  ; ; 2 5 3 e. CC | 
						
							| 300 | 299 | mulridi |  |-  ( ; ; 2 5 3 x. 1 ) = ; ; 2 5 3 | 
						
							| 301 | 300 | oveq1i |  |-  ( ( ; ; 2 5 3 x. 1 ) + 0 ) = ( ; ; 2 5 3 + 0 ) | 
						
							| 302 | 299 | addridi |  |-  ( ; ; 2 5 3 + 0 ) = ; ; 2 5 3 | 
						
							| 303 | 301 302 | eqtri |  |-  ( ( ; ; 2 5 3 x. 1 ) + 0 ) = ; ; 2 5 3 | 
						
							| 304 | 12 57 269 52 270 279 227 49 226 298 303 | decma2c |  |-  ( ( ; ; 2 5 3 x. ; 2 1 ) + ( ; 1 7 + ; ; 2 0 3 ) ) = ; ; ; 5 5 3 3 | 
						
							| 305 | 93 | dec0h |  |-  7 = ; 0 7 | 
						
							| 306 | 74 | addlidi |  |-  ( 0 + 4 ) = 4 | 
						
							| 307 | 306 | oveq2i |  |-  ( ( 2 x. 8 ) + ( 0 + 4 ) ) = ( ( 2 x. 8 ) + 4 ) | 
						
							| 308 |  | 8t2e16 |  |-  ( 8 x. 2 ) = ; 1 6 | 
						
							| 309 | 244 75 308 | mulcomli |  |-  ( 2 x. 8 ) = ; 1 6 | 
						
							| 310 |  | 6p4e10 |  |-  ( 6 + 4 ) = ; 1 0 | 
						
							| 311 | 57 55 5 309 243 310 | decaddci2 |  |-  ( ( 2 x. 8 ) + 4 ) = ; 2 0 | 
						
							| 312 | 307 311 | eqtri |  |-  ( ( 2 x. 8 ) + ( 0 + 4 ) ) = ; 2 0 | 
						
							| 313 |  | 8t5e40 |  |-  ( 8 x. 5 ) = ; 4 0 | 
						
							| 314 | 244 71 313 | mulcomli |  |-  ( 5 x. 8 ) = ; 4 0 | 
						
							| 315 | 5 52 49 314 181 | decaddi |  |-  ( ( 5 x. 8 ) + 3 ) = ; 4 3 | 
						
							| 316 | 12 50 52 49 282 183 133 49 5 312 315 | decmac |  |-  ( ( ; 2 5 x. 8 ) + ( 0 + 3 ) ) = ; ; 2 0 3 | 
						
							| 317 |  | 8t3e24 |  |-  ( 8 x. 3 ) = ; 2 4 | 
						
							| 318 | 244 98 317 | mulcomli |  |-  ( 3 x. 8 ) = ; 2 4 | 
						
							| 319 |  | 2p1e3 |  |-  ( 2 + 1 ) = 3 | 
						
							| 320 |  | 7p4e11 |  |-  ( 7 + 4 ) = ; 1 1 | 
						
							| 321 | 70 74 320 | addcomli |  |-  ( 4 + 7 ) = ; 1 1 | 
						
							| 322 | 12 5 93 318 319 57 321 | decaddci |  |-  ( ( 3 x. 8 ) + 7 ) = ; 3 1 | 
						
							| 323 | 226 49 52 93 280 305 133 57 49 316 322 | decmac |  |-  ( ( ; ; 2 5 3 x. 8 ) + 7 ) = ; ; ; 2 0 3 1 | 
						
							| 324 | 228 133 263 93 265 266 227 57 268 304 323 | decma2c |  |-  ( ( ; ; 2 5 3 x. ; ; 2 1 8 ) + ; ; 1 7 7 ) = ; ; ; ; 5 5 3 3 1 | 
						
							| 325 | 57 5 49 249 240 | decaddi |  |-  ( ( 2 x. 7 ) + 3 ) = ; 1 7 | 
						
							| 326 | 49 50 12 73 217 | decaddi |  |-  ( ( 5 x. 7 ) + 2 ) = ; 3 7 | 
						
							| 327 | 12 50 12 282 93 93 49 325 326 | decrmac |  |-  ( ( ; 2 5 x. 7 ) + 2 ) = ; ; 1 7 7 | 
						
							| 328 | 93 226 49 280 57 12 327 174 | decmul1c |  |-  ( ; ; 2 5 3 x. 7 ) = ; ; ; 1 7 7 1 | 
						
							| 329 | 227 229 93 262 57 264 324 328 | decmul2c |  |-  ( ; ; 2 5 3 x. ( 3 ^ 7 ) ) = ; ; ; ; ; 5 5 3 3 1 1 | 
						
							| 330 |  | eqid |  |-  ; ; ; ; 5 5 3 3 1 = ; ; ; ; 5 5 3 3 1 | 
						
							| 331 |  | eqid |  |-  ; ; ; 5 5 3 3 = ; ; ; 5 5 3 3 | 
						
							| 332 |  | eqid |  |-  ; ; 5 5 3 = ; ; 5 5 3 | 
						
							| 333 |  | eqid |  |-  ; 5 5 = ; 5 5 | 
						
							| 334 | 274 196 | eqtri |  |-  ( 0 + 2 ) = ; 0 2 | 
						
							| 335 | 181 | oveq2i |  |-  ( ( 5 x. 7 ) + ( 0 + 3 ) ) = ( ( 5 x. 7 ) + 3 ) | 
						
							| 336 | 335 171 | eqtri |  |-  ( ( 5 x. 7 ) + ( 0 + 3 ) ) = ; 3 8 | 
						
							| 337 | 50 50 52 12 333 334 93 93 49 336 326 | decmac |  |-  ( ( ; 5 5 x. 7 ) + ( 0 + 2 ) ) = ; ; 3 8 7 | 
						
							| 338 | 12 57 12 174 168 | decaddi |  |-  ( ( 3 x. 7 ) + 2 ) = ; 2 3 | 
						
							| 339 | 222 49 52 12 332 196 93 49 12 337 338 | decmac |  |-  ( ( ; ; 5 5 3 x. 7 ) + 2 ) = ; ; ; 3 8 7 3 | 
						
							| 340 | 93 223 49 331 57 12 339 174 | decmul1c |  |-  ( ; ; ; 5 5 3 3 x. 7 ) = ; ; ; ; 3 8 7 3 1 | 
						
							| 341 | 70 | mullidi |  |-  ( 1 x. 7 ) = 7 | 
						
							| 342 | 93 224 57 330 340 341 | decmul1 |  |-  ( ; ; ; ; 5 5 3 3 1 x. 7 ) = ; ; ; ; ; 3 8 7 3 1 7 | 
						
							| 343 | 93 225 57 329 342 341 | decmul1 |  |-  ( ( ; ; 2 5 3 x. ( 3 ^ 7 ) ) x. 7 ) = ; ; ; ; ; ; 3 8 7 3 1 7 7 | 
						
							| 344 | 143 221 343 | 3brtr4i |  |-  ( ; ; ; ; 5 3 0 5 7 x. ; 7 3 ) < ( ( ; ; 2 5 3 x. ( 3 ^ 7 ) ) x. 7 ) | 
						
							| 345 | 93 49 | deccl |  |-  ; 7 3 e. NN0 | 
						
							| 346 | 124 345 | nn0mulcli |  |-  ( ; ; ; ; 5 3 0 5 7 x. ; 7 3 ) e. NN0 | 
						
							| 347 | 346 | nn0rei |  |-  ( ; ; ; ; 5 3 0 5 7 x. ; 7 3 ) e. RR | 
						
							| 348 | 49 93 | nn0expcli |  |-  ( 3 ^ 7 ) e. NN0 | 
						
							| 349 | 227 348 | nn0mulcli |  |-  ( ; ; 2 5 3 x. ( 3 ^ 7 ) ) e. NN0 | 
						
							| 350 | 349 93 | nn0mulcli |  |-  ( ( ; ; 2 5 3 x. ( 3 ^ 7 ) ) x. 7 ) e. NN0 | 
						
							| 351 | 350 | nn0rei |  |-  ( ( ; ; 2 5 3 x. ( 3 ^ 7 ) ) x. 7 ) e. RR | 
						
							| 352 | 62 | nnrei |  |-  5 e. RR | 
						
							| 353 | 62 | nngt0i |  |-  0 < 5 | 
						
							| 354 | 347 351 352 353 | ltmul1ii |  |-  ( ( ; ; ; ; 5 3 0 5 7 x. ; 7 3 ) < ( ( ; ; 2 5 3 x. ( 3 ^ 7 ) ) x. 7 ) <-> ( ( ; ; ; ; 5 3 0 5 7 x. ; 7 3 ) x. 5 ) < ( ( ( ; ; 2 5 3 x. ( 3 ^ 7 ) ) x. 7 ) x. 5 ) ) | 
						
							| 355 | 344 354 | mpbi |  |-  ( ( ; ; ; ; 5 3 0 5 7 x. ; 7 3 ) x. 5 ) < ( ( ( ; ; 2 5 3 x. ( 3 ^ 7 ) ) x. 7 ) x. 5 ) | 
						
							| 356 | 124 | nn0cni |  |-  ; ; ; ; 5 3 0 5 7 e. CC | 
						
							| 357 | 345 | nn0cni |  |-  ; 7 3 e. CC | 
						
							| 358 | 356 357 71 | mulassi |  |-  ( ( ; ; ; ; 5 3 0 5 7 x. ; 7 3 ) x. 5 ) = ( ; ; ; ; 5 3 0 5 7 x. ( ; 7 3 x. 5 ) ) | 
						
							| 359 | 49 50 155 72 | decsuc |  |-  ( ( 7 x. 5 ) + 1 ) = ; 3 6 | 
						
							| 360 | 71 98 203 | mulcomli |  |-  ( 3 x. 5 ) = ; 1 5 | 
						
							| 361 | 50 93 49 144 50 57 359 360 | decmul1c |  |-  ( ; 7 3 x. 5 ) = ; ; 3 6 5 | 
						
							| 362 | 361 | oveq2i |  |-  ( ; ; ; ; 5 3 0 5 7 x. ( ; 7 3 x. 5 ) ) = ( ; ; ; ; 5 3 0 5 7 x. ; ; 3 6 5 ) | 
						
							| 363 | 358 362 | eqtri |  |-  ( ( ; ; ; ; 5 3 0 5 7 x. ; 7 3 ) x. 5 ) = ( ; ; ; ; 5 3 0 5 7 x. ; ; 3 6 5 ) | 
						
							| 364 | 299 96 | mulcli |  |-  ( ; ; 2 5 3 x. ( 3 ^ 7 ) ) e. CC | 
						
							| 365 | 364 70 71 | mulassi |  |-  ( ( ( ; ; 2 5 3 x. ( 3 ^ 7 ) ) x. 7 ) x. 5 ) = ( ( ; ; 2 5 3 x. ( 3 ^ 7 ) ) x. ( 7 x. 5 ) ) | 
						
							| 366 | 70 71 | mulcomi |  |-  ( 7 x. 5 ) = ( 5 x. 7 ) | 
						
							| 367 | 366 | oveq2i |  |-  ( ( ; ; 2 5 3 x. ( 3 ^ 7 ) ) x. ( 7 x. 5 ) ) = ( ( ; ; 2 5 3 x. ( 3 ^ 7 ) ) x. ( 5 x. 7 ) ) | 
						
							| 368 | 299 96 97 | mulassi |  |-  ( ( ; ; 2 5 3 x. ( 3 ^ 7 ) ) x. ( 5 x. 7 ) ) = ( ; ; 2 5 3 x. ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) ) | 
						
							| 369 | 367 368 | eqtri |  |-  ( ( ; ; 2 5 3 x. ( 3 ^ 7 ) ) x. ( 7 x. 5 ) ) = ( ; ; 2 5 3 x. ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) ) | 
						
							| 370 | 365 369 | eqtri |  |-  ( ( ( ; ; 2 5 3 x. ( 3 ^ 7 ) ) x. 7 ) x. 5 ) = ( ; ; 2 5 3 x. ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) ) | 
						
							| 371 | 355 363 370 | 3brtr3i |  |-  ( ; ; ; ; 5 3 0 5 7 x. ; ; 3 6 5 ) < ( ; ; 2 5 3 x. ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) ) | 
						
							| 372 | 49 55 | deccl |  |-  ; 3 6 e. NN0 | 
						
							| 373 | 372 62 | decnncl |  |-  ; ; 3 6 5 e. NN | 
						
							| 374 | 373 | nnrei |  |-  ; ; 3 6 5 e. RR | 
						
							| 375 | 373 | nngt0i |  |-  0 < ; ; 3 6 5 | 
						
							| 376 | 374 375 | pm3.2i |  |-  ( ; ; 3 6 5 e. RR /\ 0 < ; ; 3 6 5 ) | 
						
							| 377 | 227 | nn0rei |  |-  ; ; 2 5 3 e. RR | 
						
							| 378 |  | lt2mul2div |  |-  ( ( ( ; ; ; ; 5 3 0 5 7 e. RR /\ ( ; ; 3 6 5 e. RR /\ 0 < ; ; 3 6 5 ) ) /\ ( ; ; 2 5 3 e. RR /\ ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) e. RR /\ 0 < ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) ) ) ) -> ( ( ; ; ; ; 5 3 0 5 7 x. ; ; 3 6 5 ) < ( ; ; 2 5 3 x. ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) ) <-> ( ; ; ; ; 5 3 0 5 7 / ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) ) < ( ; ; 2 5 3 / ; ; 3 6 5 ) ) ) | 
						
							| 379 | 125 376 377 129 378 | mp4an |  |-  ( ( ; ; ; ; 5 3 0 5 7 x. ; ; 3 6 5 ) < ( ; ; 2 5 3 x. ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) ) <-> ( ; ; ; ; 5 3 0 5 7 / ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) ) < ( ; ; 2 5 3 / ; ; 3 6 5 ) ) | 
						
							| 380 | 371 379 | mpbi |  |-  ( ; ; ; ; 5 3 0 5 7 / ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) ) < ( ; ; 2 5 3 / ; ; 3 6 5 ) | 
						
							| 381 |  | nndivre |  |-  ( ( ; ; ; ; 5 3 0 5 7 e. RR /\ ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) e. NN ) -> ( ; ; ; ; 5 3 0 5 7 / ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) ) e. RR ) | 
						
							| 382 | 125 126 381 | mp2an |  |-  ( ; ; ; ; 5 3 0 5 7 / ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) ) e. RR | 
						
							| 383 |  | nndivre |  |-  ( ( ; ; 2 5 3 e. RR /\ ; ; 3 6 5 e. NN ) -> ( ; ; 2 5 3 / ; ; 3 6 5 ) e. RR ) | 
						
							| 384 | 377 373 383 | mp2an |  |-  ( ; ; 2 5 3 / ; ; 3 6 5 ) e. RR | 
						
							| 385 | 123 382 384 | lelttri |  |-  ( ( ( sum_ n e. ( 0 ... 3 ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) + ( 3 / ( ( 4 x. ( ( 2 x. 4 ) + 1 ) ) x. ( 9 ^ 4 ) ) ) ) <_ ( ; ; ; ; 5 3 0 5 7 / ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) ) /\ ( ; ; ; ; 5 3 0 5 7 / ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) ) < ( ; ; 2 5 3 / ; ; 3 6 5 ) ) -> ( sum_ n e. ( 0 ... 3 ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) + ( 3 / ( ( 4 x. ( ( 2 x. 4 ) + 1 ) ) x. ( 9 ^ 4 ) ) ) ) < ( ; ; 2 5 3 / ; ; 3 6 5 ) ) | 
						
							| 386 | 132 380 385 | mp2an |  |-  ( sum_ n e. ( 0 ... 3 ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) + ( 3 / ( ( 4 x. ( ( 2 x. 4 ) + 1 ) ) x. ( 9 ^ 4 ) ) ) ) < ( ; ; 2 5 3 / ; ; 3 6 5 ) | 
						
							| 387 | 27 123 384 | lelttri |  |-  ( ( ( log ` 2 ) <_ ( sum_ n e. ( 0 ... 3 ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) + ( 3 / ( ( 4 x. ( ( 2 x. 4 ) + 1 ) ) x. ( 9 ^ 4 ) ) ) ) /\ ( sum_ n e. ( 0 ... 3 ) ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) + ( 3 / ( ( 4 x. ( ( 2 x. 4 ) + 1 ) ) x. ( 9 ^ 4 ) ) ) ) < ( ; ; 2 5 3 / ; ; 3 6 5 ) ) -> ( log ` 2 ) < ( ; ; 2 5 3 / ; ; 3 6 5 ) ) | 
						
							| 388 | 47 386 387 | mp2an |  |-  ( log ` 2 ) < ( ; ; 2 5 3 / ; ; 3 6 5 ) |