| Step | Hyp | Ref | Expression | 
						
							| 1 |  | log2ublem1.1 |  |-  ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. A ) <_ B | 
						
							| 2 |  | log2ublem1.2 |  |-  A e. RR | 
						
							| 3 |  | log2ublem1.3 |  |-  D e. NN0 | 
						
							| 4 |  | log2ublem1.4 |  |-  E e. NN | 
						
							| 5 |  | log2ublem1.5 |  |-  B e. NN0 | 
						
							| 6 |  | log2ublem1.6 |  |-  F e. NN0 | 
						
							| 7 |  | log2ublem1.7 |  |-  C = ( A + ( D / E ) ) | 
						
							| 8 |  | log2ublem1.8 |  |-  ( B + F ) = G | 
						
							| 9 |  | log2ublem1.9 |  |-  ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. D ) <_ ( E x. F ) | 
						
							| 10 |  | 3nn |  |-  3 e. NN | 
						
							| 11 |  | 7nn0 |  |-  7 e. NN0 | 
						
							| 12 |  | nnexpcl |  |-  ( ( 3 e. NN /\ 7 e. NN0 ) -> ( 3 ^ 7 ) e. NN ) | 
						
							| 13 | 10 11 12 | mp2an |  |-  ( 3 ^ 7 ) e. NN | 
						
							| 14 |  | 5nn |  |-  5 e. NN | 
						
							| 15 |  | 7nn |  |-  7 e. NN | 
						
							| 16 | 14 15 | nnmulcli |  |-  ( 5 x. 7 ) e. NN | 
						
							| 17 | 13 16 | nnmulcli |  |-  ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) e. NN | 
						
							| 18 | 17 | nncni |  |-  ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) e. CC | 
						
							| 19 | 3 | nn0cni |  |-  D e. CC | 
						
							| 20 | 4 | nncni |  |-  E e. CC | 
						
							| 21 | 4 | nnne0i |  |-  E =/= 0 | 
						
							| 22 | 18 19 20 21 | divassi |  |-  ( ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. D ) / E ) = ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. ( D / E ) ) | 
						
							| 23 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 24 | 23 11 | nn0expcli |  |-  ( 3 ^ 7 ) e. NN0 | 
						
							| 25 |  | 5nn0 |  |-  5 e. NN0 | 
						
							| 26 | 25 11 | nn0mulcli |  |-  ( 5 x. 7 ) e. NN0 | 
						
							| 27 | 24 26 | nn0mulcli |  |-  ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) e. NN0 | 
						
							| 28 | 27 3 | nn0mulcli |  |-  ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. D ) e. NN0 | 
						
							| 29 | 28 | nn0rei |  |-  ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. D ) e. RR | 
						
							| 30 | 6 | nn0rei |  |-  F e. RR | 
						
							| 31 | 4 | nnrei |  |-  E e. RR | 
						
							| 32 | 4 | nngt0i |  |-  0 < E | 
						
							| 33 | 31 32 | pm3.2i |  |-  ( E e. RR /\ 0 < E ) | 
						
							| 34 |  | ledivmul |  |-  ( ( ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. D ) e. RR /\ F e. RR /\ ( E e. RR /\ 0 < E ) ) -> ( ( ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. D ) / E ) <_ F <-> ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. D ) <_ ( E x. F ) ) ) | 
						
							| 35 | 29 30 33 34 | mp3an |  |-  ( ( ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. D ) / E ) <_ F <-> ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. D ) <_ ( E x. F ) ) | 
						
							| 36 | 9 35 | mpbir |  |-  ( ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. D ) / E ) <_ F | 
						
							| 37 | 22 36 | eqbrtrri |  |-  ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. ( D / E ) ) <_ F | 
						
							| 38 | 17 | nnrei |  |-  ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) e. RR | 
						
							| 39 | 38 2 | remulcli |  |-  ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. A ) e. RR | 
						
							| 40 | 3 | nn0rei |  |-  D e. RR | 
						
							| 41 |  | nndivre |  |-  ( ( D e. RR /\ E e. NN ) -> ( D / E ) e. RR ) | 
						
							| 42 | 40 4 41 | mp2an |  |-  ( D / E ) e. RR | 
						
							| 43 | 38 42 | remulcli |  |-  ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. ( D / E ) ) e. RR | 
						
							| 44 | 5 | nn0rei |  |-  B e. RR | 
						
							| 45 | 39 43 44 30 | le2addi |  |-  ( ( ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. A ) <_ B /\ ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. ( D / E ) ) <_ F ) -> ( ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. A ) + ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. ( D / E ) ) ) <_ ( B + F ) ) | 
						
							| 46 | 1 37 45 | mp2an |  |-  ( ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. A ) + ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. ( D / E ) ) ) <_ ( B + F ) | 
						
							| 47 | 7 | oveq2i |  |-  ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. C ) = ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. ( A + ( D / E ) ) ) | 
						
							| 48 | 2 | recni |  |-  A e. CC | 
						
							| 49 | 42 | recni |  |-  ( D / E ) e. CC | 
						
							| 50 | 18 48 49 | adddii |  |-  ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. ( A + ( D / E ) ) ) = ( ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. A ) + ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. ( D / E ) ) ) | 
						
							| 51 | 47 50 | eqtr2i |  |-  ( ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. A ) + ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. ( D / E ) ) ) = ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. C ) | 
						
							| 52 | 46 51 8 | 3brtr3i |  |-  ( ( ( 3 ^ 7 ) x. ( 5 x. 7 ) ) x. C ) <_ G |