| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldifpr |  |-  ( B e. ( CC \ { 0 , 1 } ) <-> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) | 
						
							| 2 |  | ax-1cn |  |-  1 e. CC | 
						
							| 3 |  | ax-1ne0 |  |-  1 =/= 0 | 
						
							| 4 |  | eldifsn |  |-  ( 1 e. ( CC \ { 0 } ) <-> ( 1 e. CC /\ 1 =/= 0 ) ) | 
						
							| 5 | 2 3 4 | mpbir2an |  |-  1 e. ( CC \ { 0 } ) | 
						
							| 6 |  | logbval |  |-  ( ( B e. ( CC \ { 0 , 1 } ) /\ 1 e. ( CC \ { 0 } ) ) -> ( B logb 1 ) = ( ( log ` 1 ) / ( log ` B ) ) ) | 
						
							| 7 | 5 6 | mpan2 |  |-  ( B e. ( CC \ { 0 , 1 } ) -> ( B logb 1 ) = ( ( log ` 1 ) / ( log ` B ) ) ) | 
						
							| 8 | 1 7 | sylbir |  |-  ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( B logb 1 ) = ( ( log ` 1 ) / ( log ` B ) ) ) | 
						
							| 9 |  | log1 |  |-  ( log ` 1 ) = 0 | 
						
							| 10 | 9 | oveq1i |  |-  ( ( log ` 1 ) / ( log ` B ) ) = ( 0 / ( log ` B ) ) | 
						
							| 11 |  | simp1 |  |-  ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> B e. CC ) | 
						
							| 12 |  | simp2 |  |-  ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> B =/= 0 ) | 
						
							| 13 | 11 12 | logcld |  |-  ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( log ` B ) e. CC ) | 
						
							| 14 |  | logccne0 |  |-  ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( log ` B ) =/= 0 ) | 
						
							| 15 | 13 14 | div0d |  |-  ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( 0 / ( log ` B ) ) = 0 ) | 
						
							| 16 | 10 15 | eqtrid |  |-  ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( ( log ` 1 ) / ( log ` B ) ) = 0 ) | 
						
							| 17 | 8 16 | eqtrd |  |-  ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( B logb 1 ) = 0 ) |