Step |
Hyp |
Ref |
Expression |
1 |
|
eldifsn |
|- ( X e. ( CC \ { 0 } ) <-> ( X e. CC /\ X =/= 0 ) ) |
2 |
|
logcl |
|- ( ( X e. CC /\ X =/= 0 ) -> ( log ` X ) e. CC ) |
3 |
1 2
|
sylbi |
|- ( X e. ( CC \ { 0 } ) -> ( log ` X ) e. CC ) |
4 |
3
|
3ad2ant3 |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( B e. CC /\ B =/= 0 /\ B =/= 1 ) /\ X e. ( CC \ { 0 } ) ) -> ( log ` X ) e. CC ) |
5 |
|
logcl |
|- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. CC ) |
6 |
5
|
3adant3 |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( log ` A ) e. CC ) |
7 |
|
logccne0 |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( log ` A ) =/= 0 ) |
8 |
6 7
|
jca |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( log ` A ) e. CC /\ ( log ` A ) =/= 0 ) ) |
9 |
8
|
3ad2ant1 |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( B e. CC /\ B =/= 0 /\ B =/= 1 ) /\ X e. ( CC \ { 0 } ) ) -> ( ( log ` A ) e. CC /\ ( log ` A ) =/= 0 ) ) |
10 |
|
logcl |
|- ( ( B e. CC /\ B =/= 0 ) -> ( log ` B ) e. CC ) |
11 |
10
|
3adant3 |
|- ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( log ` B ) e. CC ) |
12 |
|
logccne0 |
|- ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( log ` B ) =/= 0 ) |
13 |
11 12
|
jca |
|- ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( ( log ` B ) e. CC /\ ( log ` B ) =/= 0 ) ) |
14 |
13
|
3ad2ant2 |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( B e. CC /\ B =/= 0 /\ B =/= 1 ) /\ X e. ( CC \ { 0 } ) ) -> ( ( log ` B ) e. CC /\ ( log ` B ) =/= 0 ) ) |
15 |
|
divcan7 |
|- ( ( ( log ` X ) e. CC /\ ( ( log ` A ) e. CC /\ ( log ` A ) =/= 0 ) /\ ( ( log ` B ) e. CC /\ ( log ` B ) =/= 0 ) ) -> ( ( ( log ` X ) / ( log ` B ) ) / ( ( log ` A ) / ( log ` B ) ) ) = ( ( log ` X ) / ( log ` A ) ) ) |
16 |
4 9 14 15
|
syl3anc |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( B e. CC /\ B =/= 0 /\ B =/= 1 ) /\ X e. ( CC \ { 0 } ) ) -> ( ( ( log ` X ) / ( log ` B ) ) / ( ( log ` A ) / ( log ` B ) ) ) = ( ( log ` X ) / ( log ` A ) ) ) |
17 |
|
eldifpr |
|- ( B e. ( CC \ { 0 , 1 } ) <-> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) |
18 |
|
logbval |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> ( B logb X ) = ( ( log ` X ) / ( log ` B ) ) ) |
19 |
17 18
|
sylanbr |
|- ( ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) /\ X e. ( CC \ { 0 } ) ) -> ( B logb X ) = ( ( log ` X ) / ( log ` B ) ) ) |
20 |
19
|
3adant1 |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( B e. CC /\ B =/= 0 /\ B =/= 1 ) /\ X e. ( CC \ { 0 } ) ) -> ( B logb X ) = ( ( log ` X ) / ( log ` B ) ) ) |
21 |
17
|
biimpri |
|- ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> B e. ( CC \ { 0 , 1 } ) ) |
22 |
|
eldifsn |
|- ( A e. ( CC \ { 0 } ) <-> ( A e. CC /\ A =/= 0 ) ) |
23 |
22
|
biimpri |
|- ( ( A e. CC /\ A =/= 0 ) -> A e. ( CC \ { 0 } ) ) |
24 |
23
|
3adant3 |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> A e. ( CC \ { 0 } ) ) |
25 |
|
logbval |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ A e. ( CC \ { 0 } ) ) -> ( B logb A ) = ( ( log ` A ) / ( log ` B ) ) ) |
26 |
21 24 25
|
syl2anr |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) -> ( B logb A ) = ( ( log ` A ) / ( log ` B ) ) ) |
27 |
26
|
3adant3 |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( B e. CC /\ B =/= 0 /\ B =/= 1 ) /\ X e. ( CC \ { 0 } ) ) -> ( B logb A ) = ( ( log ` A ) / ( log ` B ) ) ) |
28 |
20 27
|
oveq12d |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( B e. CC /\ B =/= 0 /\ B =/= 1 ) /\ X e. ( CC \ { 0 } ) ) -> ( ( B logb X ) / ( B logb A ) ) = ( ( ( log ` X ) / ( log ` B ) ) / ( ( log ` A ) / ( log ` B ) ) ) ) |
29 |
|
eldifpr |
|- ( A e. ( CC \ { 0 , 1 } ) <-> ( A e. CC /\ A =/= 0 /\ A =/= 1 ) ) |
30 |
|
logbval |
|- ( ( A e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> ( A logb X ) = ( ( log ` X ) / ( log ` A ) ) ) |
31 |
29 30
|
sylanbr |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ X e. ( CC \ { 0 } ) ) -> ( A logb X ) = ( ( log ` X ) / ( log ` A ) ) ) |
32 |
31
|
3adant2 |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( B e. CC /\ B =/= 0 /\ B =/= 1 ) /\ X e. ( CC \ { 0 } ) ) -> ( A logb X ) = ( ( log ` X ) / ( log ` A ) ) ) |
33 |
16 28 32
|
3eqtr4rd |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( B e. CC /\ B =/= 0 /\ B =/= 1 ) /\ X e. ( CC \ { 0 } ) ) -> ( A logb X ) = ( ( B logb X ) / ( B logb A ) ) ) |