| Step | Hyp | Ref | Expression | 
						
							| 1 |  | logbval |  |-  ( ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> ( B logb X ) = ( ( log ` X ) / ( log ` B ) ) ) | 
						
							| 2 |  | eldifsn |  |-  ( X e. ( CC \ { 0 } ) <-> ( X e. CC /\ X =/= 0 ) ) | 
						
							| 3 |  | logcl |  |-  ( ( X e. CC /\ X =/= 0 ) -> ( log ` X ) e. CC ) | 
						
							| 4 | 2 3 | sylbi |  |-  ( X e. ( CC \ { 0 } ) -> ( log ` X ) e. CC ) | 
						
							| 5 | 4 | adantl |  |-  ( ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> ( log ` X ) e. CC ) | 
						
							| 6 |  | eldifi |  |-  ( B e. ( CC \ { 0 , 1 } ) -> B e. CC ) | 
						
							| 7 |  | eldifpr |  |-  ( B e. ( CC \ { 0 , 1 } ) <-> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) | 
						
							| 8 | 7 | simp2bi |  |-  ( B e. ( CC \ { 0 , 1 } ) -> B =/= 0 ) | 
						
							| 9 | 6 8 | logcld |  |-  ( B e. ( CC \ { 0 , 1 } ) -> ( log ` B ) e. CC ) | 
						
							| 10 | 9 | adantr |  |-  ( ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> ( log ` B ) e. CC ) | 
						
							| 11 |  | logccne0 |  |-  ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( log ` B ) =/= 0 ) | 
						
							| 12 | 7 11 | sylbi |  |-  ( B e. ( CC \ { 0 , 1 } ) -> ( log ` B ) =/= 0 ) | 
						
							| 13 | 12 | adantr |  |-  ( ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> ( log ` B ) =/= 0 ) | 
						
							| 14 | 5 10 13 | divcld |  |-  ( ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> ( ( log ` X ) / ( log ` B ) ) e. CC ) | 
						
							| 15 | 1 14 | eqeltrd |  |-  ( ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> ( B logb X ) e. CC ) |