Step |
Hyp |
Ref |
Expression |
1 |
|
logbmpt |
|- ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( curry logb ` B ) = ( y e. ( CC \ { 0 } ) |-> ( ( log ` y ) / ( log ` B ) ) ) ) |
2 |
|
eldifsn |
|- ( y e. ( CC \ { 0 } ) <-> ( y e. CC /\ y =/= 0 ) ) |
3 |
|
logcl |
|- ( ( y e. CC /\ y =/= 0 ) -> ( log ` y ) e. CC ) |
4 |
2 3
|
sylbi |
|- ( y e. ( CC \ { 0 } ) -> ( log ` y ) e. CC ) |
5 |
4
|
adantl |
|- ( ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) /\ y e. ( CC \ { 0 } ) ) -> ( log ` y ) e. CC ) |
6 |
|
logcl |
|- ( ( B e. CC /\ B =/= 0 ) -> ( log ` B ) e. CC ) |
7 |
6
|
3adant3 |
|- ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( log ` B ) e. CC ) |
8 |
7
|
adantr |
|- ( ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) /\ y e. ( CC \ { 0 } ) ) -> ( log ` B ) e. CC ) |
9 |
|
logccne0 |
|- ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( log ` B ) =/= 0 ) |
10 |
9
|
adantr |
|- ( ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) /\ y e. ( CC \ { 0 } ) ) -> ( log ` B ) =/= 0 ) |
11 |
5 8 10
|
divcld |
|- ( ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) /\ y e. ( CC \ { 0 } ) ) -> ( ( log ` y ) / ( log ` B ) ) e. CC ) |
12 |
1 11
|
fmpt3d |
|- ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( curry logb ` B ) : ( CC \ { 0 } ) --> CC ) |