| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							logbmpt | 
							 |-  ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( curry logb ` B ) = ( y e. ( CC \ { 0 } ) |-> ( ( log ` y ) / ( log ` B ) ) ) ) | 
						
						
							| 2 | 
							
								
							 | 
							eldifsn | 
							 |-  ( y e. ( CC \ { 0 } ) <-> ( y e. CC /\ y =/= 0 ) ) | 
						
						
							| 3 | 
							
								
							 | 
							logcl | 
							 |-  ( ( y e. CC /\ y =/= 0 ) -> ( log ` y ) e. CC )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							sylbi | 
							 |-  ( y e. ( CC \ { 0 } ) -> ( log ` y ) e. CC ) | 
						
						
							| 5 | 
							
								4
							 | 
							adantl | 
							 |-  ( ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) /\ y e. ( CC \ { 0 } ) ) -> ( log ` y ) e. CC ) | 
						
						
							| 6 | 
							
								
							 | 
							logcl | 
							 |-  ( ( B e. CC /\ B =/= 0 ) -> ( log ` B ) e. CC )  | 
						
						
							| 7 | 
							
								6
							 | 
							3adant3 | 
							 |-  ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( log ` B ) e. CC )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantr | 
							 |-  ( ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) /\ y e. ( CC \ { 0 } ) ) -> ( log ` B ) e. CC ) | 
						
						
							| 9 | 
							
								
							 | 
							logccne0 | 
							 |-  ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( log ` B ) =/= 0 )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantr | 
							 |-  ( ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) /\ y e. ( CC \ { 0 } ) ) -> ( log ` B ) =/= 0 ) | 
						
						
							| 11 | 
							
								5 8 10
							 | 
							divcld | 
							 |-  ( ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) /\ y e. ( CC \ { 0 } ) ) -> ( ( log ` y ) / ( log ` B ) ) e. CC ) | 
						
						
							| 12 | 
							
								1 11
							 | 
							fmpt3d | 
							 |-  ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( curry logb ` B ) : ( CC \ { 0 } ) --> CC ) |