| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldifpr |  |-  ( A e. ( CC \ { 0 , 1 } ) <-> ( A e. CC /\ A =/= 0 /\ A =/= 1 ) ) | 
						
							| 2 | 1 | biimpri |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> A e. ( CC \ { 0 , 1 } ) ) | 
						
							| 3 |  | eldifsn |  |-  ( A e. ( CC \ { 0 } ) <-> ( A e. CC /\ A =/= 0 ) ) | 
						
							| 4 | 3 | biimpri |  |-  ( ( A e. CC /\ A =/= 0 ) -> A e. ( CC \ { 0 } ) ) | 
						
							| 5 | 4 | 3adant3 |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> A e. ( CC \ { 0 } ) ) | 
						
							| 6 |  | logbval |  |-  ( ( A e. ( CC \ { 0 , 1 } ) /\ A e. ( CC \ { 0 } ) ) -> ( A logb A ) = ( ( log ` A ) / ( log ` A ) ) ) | 
						
							| 7 | 2 5 6 | syl2anc |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( A logb A ) = ( ( log ` A ) / ( log ` A ) ) ) | 
						
							| 8 |  | logcl |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. CC ) | 
						
							| 9 | 8 | 3adant3 |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( log ` A ) e. CC ) | 
						
							| 10 |  | logccne0 |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( log ` A ) =/= 0 ) | 
						
							| 11 | 9 10 | dividd |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( log ` A ) / ( log ` A ) ) = 1 ) | 
						
							| 12 | 7 11 | eqtrd |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( A logb A ) = 1 ) |