Step |
Hyp |
Ref |
Expression |
1 |
|
eldifpr |
|- ( A e. ( CC \ { 0 , 1 } ) <-> ( A e. CC /\ A =/= 0 /\ A =/= 1 ) ) |
2 |
1
|
biimpri |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> A e. ( CC \ { 0 , 1 } ) ) |
3 |
|
eldifsn |
|- ( A e. ( CC \ { 0 } ) <-> ( A e. CC /\ A =/= 0 ) ) |
4 |
3
|
biimpri |
|- ( ( A e. CC /\ A =/= 0 ) -> A e. ( CC \ { 0 } ) ) |
5 |
4
|
3adant3 |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> A e. ( CC \ { 0 } ) ) |
6 |
|
logbval |
|- ( ( A e. ( CC \ { 0 , 1 } ) /\ A e. ( CC \ { 0 } ) ) -> ( A logb A ) = ( ( log ` A ) / ( log ` A ) ) ) |
7 |
2 5 6
|
syl2anc |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( A logb A ) = ( ( log ` A ) / ( log ` A ) ) ) |
8 |
|
logcl |
|- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. CC ) |
9 |
8
|
3adant3 |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( log ` A ) e. CC ) |
10 |
|
logccne0 |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( log ` A ) =/= 0 ) |
11 |
9 10
|
dividd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( log ` A ) / ( log ` A ) ) = 1 ) |
12 |
7 11
|
eqtrd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( A logb A ) = 1 ) |