Step |
Hyp |
Ref |
Expression |
1 |
|
loge |
|- ( log ` _e ) = 1 |
2 |
1
|
a1i |
|- ( y e. ( CC \ { 0 } ) -> ( log ` _e ) = 1 ) |
3 |
2
|
oveq2d |
|- ( y e. ( CC \ { 0 } ) -> ( ( log ` y ) / ( log ` _e ) ) = ( ( log ` y ) / 1 ) ) |
4 |
|
eldifsn |
|- ( y e. ( CC \ { 0 } ) <-> ( y e. CC /\ y =/= 0 ) ) |
5 |
|
logcl |
|- ( ( y e. CC /\ y =/= 0 ) -> ( log ` y ) e. CC ) |
6 |
4 5
|
sylbi |
|- ( y e. ( CC \ { 0 } ) -> ( log ` y ) e. CC ) |
7 |
6
|
div1d |
|- ( y e. ( CC \ { 0 } ) -> ( ( log ` y ) / 1 ) = ( log ` y ) ) |
8 |
3 7
|
eqtrd |
|- ( y e. ( CC \ { 0 } ) -> ( ( log ` y ) / ( log ` _e ) ) = ( log ` y ) ) |
9 |
8
|
mpteq2ia |
|- ( y e. ( CC \ { 0 } ) |-> ( ( log ` y ) / ( log ` _e ) ) ) = ( y e. ( CC \ { 0 } ) |-> ( log ` y ) ) |
10 |
|
ere |
|- _e e. RR |
11 |
10
|
recni |
|- _e e. CC |
12 |
|
ene0 |
|- _e =/= 0 |
13 |
|
ene1 |
|- _e =/= 1 |
14 |
|
logbmpt |
|- ( ( _e e. CC /\ _e =/= 0 /\ _e =/= 1 ) -> ( curry logb ` _e ) = ( y e. ( CC \ { 0 } ) |-> ( ( log ` y ) / ( log ` _e ) ) ) ) |
15 |
11 12 13 14
|
mp3an |
|- ( curry logb ` _e ) = ( y e. ( CC \ { 0 } ) |-> ( ( log ` y ) / ( log ` _e ) ) ) |
16 |
|
logf1o |
|- log : ( CC \ { 0 } ) -1-1-onto-> ran log |
17 |
|
f1ofn |
|- ( log : ( CC \ { 0 } ) -1-1-onto-> ran log -> log Fn ( CC \ { 0 } ) ) |
18 |
16 17
|
ax-mp |
|- log Fn ( CC \ { 0 } ) |
19 |
|
dffn5 |
|- ( log Fn ( CC \ { 0 } ) <-> log = ( y e. ( CC \ { 0 } ) |-> ( log ` y ) ) ) |
20 |
18 19
|
mpbi |
|- log = ( y e. ( CC \ { 0 } ) |-> ( log ` y ) ) |
21 |
9 15 20
|
3eqtr4i |
|- ( curry logb ` _e ) = log |