| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-logb | 
							 |-  logb = ( x e. ( CC \ { 0 , 1 } ) , y e. ( CC \ { 0 } ) |-> ( ( log ` y ) / ( log ` x ) ) ) | 
						
						
							| 2 | 
							
								
							 | 
							ovexd | 
							 |-  ( ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) /\ ( x e. ( CC \ { 0 , 1 } ) /\ y e. ( CC \ { 0 } ) ) ) -> ( ( log ` y ) / ( log ` x ) ) e. _V ) | 
						
						
							| 3 | 
							
								2
							 | 
							ralrimivva | 
							 |-  ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> A. x e. ( CC \ { 0 , 1 } ) A. y e. ( CC \ { 0 } ) ( ( log ` y ) / ( log ` x ) ) e. _V ) | 
						
						
							| 4 | 
							
								
							 | 
							ax-1cn | 
							 |-  1 e. CC  | 
						
						
							| 5 | 
							
								
							 | 
							ax-1ne0 | 
							 |-  1 =/= 0  | 
						
						
							| 6 | 
							
								
							 | 
							elsng | 
							 |-  ( 1 e. CC -> ( 1 e. { 0 } <-> 1 = 0 ) ) | 
						
						
							| 7 | 
							
								4 6
							 | 
							ax-mp | 
							 |-  ( 1 e. { 0 } <-> 1 = 0 ) | 
						
						
							| 8 | 
							
								5 7
							 | 
							nemtbir | 
							 |-  -. 1 e. { 0 } | 
						
						
							| 9 | 
							
								
							 | 
							eldif | 
							 |-  ( 1 e. ( CC \ { 0 } ) <-> ( 1 e. CC /\ -. 1 e. { 0 } ) ) | 
						
						
							| 10 | 
							
								4 8 9
							 | 
							mpbir2an | 
							 |-  1 e. ( CC \ { 0 } ) | 
						
						
							| 11 | 
							
								10
							 | 
							ne0ii | 
							 |-  ( CC \ { 0 } ) =/= (/) | 
						
						
							| 12 | 
							
								11
							 | 
							a1i | 
							 |-  ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( CC \ { 0 } ) =/= (/) ) | 
						
						
							| 13 | 
							
								
							 | 
							cnex | 
							 |-  CC e. _V  | 
						
						
							| 14 | 
							
								13
							 | 
							difexi | 
							 |-  ( CC \ { 0 } ) e. _V | 
						
						
							| 15 | 
							
								14
							 | 
							a1i | 
							 |-  ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( CC \ { 0 } ) e. _V ) | 
						
						
							| 16 | 
							
								
							 | 
							eldifpr | 
							 |-  ( B e. ( CC \ { 0 , 1 } ) <-> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) | 
						
						
							| 17 | 
							
								16
							 | 
							biimpri | 
							 |-  ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> B e. ( CC \ { 0 , 1 } ) ) | 
						
						
							| 18 | 
							
								1 3 12 15 17
							 | 
							mpocurryvald | 
							 |-  ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( curry logb ` B ) = ( y e. ( CC \ { 0 } ) |-> [_ B / x ]_ ( ( log ` y ) / ( log ` x ) ) ) ) | 
						
						
							| 19 | 
							
								
							 | 
							csbov2g | 
							 |-  ( B e. CC -> [_ B / x ]_ ( ( log ` y ) / ( log ` x ) ) = ( ( log ` y ) / [_ B / x ]_ ( log ` x ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							csbfv | 
							 |-  [_ B / x ]_ ( log ` x ) = ( log ` B )  | 
						
						
							| 21 | 
							
								20
							 | 
							a1i | 
							 |-  ( B e. CC -> [_ B / x ]_ ( log ` x ) = ( log ` B ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							oveq2d | 
							 |-  ( B e. CC -> ( ( log ` y ) / [_ B / x ]_ ( log ` x ) ) = ( ( log ` y ) / ( log ` B ) ) )  | 
						
						
							| 23 | 
							
								19 22
							 | 
							eqtrd | 
							 |-  ( B e. CC -> [_ B / x ]_ ( ( log ` y ) / ( log ` x ) ) = ( ( log ` y ) / ( log ` B ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							3ad2ant1 | 
							 |-  ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> [_ B / x ]_ ( ( log ` y ) / ( log ` x ) ) = ( ( log ` y ) / ( log ` B ) ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							mpteq2dv | 
							 |-  ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( y e. ( CC \ { 0 } ) |-> [_ B / x ]_ ( ( log ` y ) / ( log ` x ) ) ) = ( y e. ( CC \ { 0 } ) |-> ( ( log ` y ) / ( log ` B ) ) ) ) | 
						
						
							| 26 | 
							
								18 25
							 | 
							eqtrd | 
							 |-  ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( curry logb ` B ) = ( y e. ( CC \ { 0 } ) |-> ( ( log ` y ) / ( log ` B ) ) ) ) |