Step |
Hyp |
Ref |
Expression |
1 |
|
prmuz2 |
|- ( X e. Prime -> X e. ( ZZ>= ` 2 ) ) |
2 |
1
|
3ad2ant1 |
|- ( ( X e. Prime /\ B e. Prime /\ X =/= B ) -> X e. ( ZZ>= ` 2 ) ) |
3 |
|
prmuz2 |
|- ( B e. Prime -> B e. ( ZZ>= ` 2 ) ) |
4 |
3
|
3ad2ant2 |
|- ( ( X e. Prime /\ B e. Prime /\ X =/= B ) -> B e. ( ZZ>= ` 2 ) ) |
5 |
|
prmrp |
|- ( ( X e. Prime /\ B e. Prime ) -> ( ( X gcd B ) = 1 <-> X =/= B ) ) |
6 |
5
|
biimp3ar |
|- ( ( X e. Prime /\ B e. Prime /\ X =/= B ) -> ( X gcd B ) = 1 ) |
7 |
|
logbgcd1irr |
|- ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) /\ ( X gcd B ) = 1 ) -> ( B logb X ) e. ( RR \ QQ ) ) |
8 |
2 4 6 7
|
syl3anc |
|- ( ( X e. Prime /\ B e. Prime /\ X =/= B ) -> ( B logb X ) e. ( RR \ QQ ) ) |