Step |
Hyp |
Ref |
Expression |
1 |
|
simp3 |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> A =/= 1 ) |
2 |
1
|
neneqd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> -. A = 1 ) |
3 |
|
logeq0im1 |
|- ( ( A e. CC /\ A =/= 0 /\ ( log ` A ) = 0 ) -> A = 1 ) |
4 |
3
|
3expia |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( log ` A ) = 0 -> A = 1 ) ) |
5 |
4
|
3adant3 |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( log ` A ) = 0 -> A = 1 ) ) |
6 |
2 5
|
mtod |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> -. ( log ` A ) = 0 ) |
7 |
6
|
neqned |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( log ` A ) =/= 0 ) |