Metamath Proof Explorer


Theorem logcld

Description: The logarithm of a nonzero complex number is a complex number. Deduction form of logcl . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses logcld.1
|- ( ph -> X e. CC )
logcld.2
|- ( ph -> X =/= 0 )
Assertion logcld
|- ( ph -> ( log ` X ) e. CC )

Proof

Step Hyp Ref Expression
1 logcld.1
 |-  ( ph -> X e. CC )
2 logcld.2
 |-  ( ph -> X =/= 0 )
3 logcl
 |-  ( ( X e. CC /\ X =/= 0 ) -> ( log ` X ) e. CC )
4 1 2 3 syl2anc
 |-  ( ph -> ( log ` X ) e. CC )