| Step | Hyp | Ref | Expression | 
						
							| 1 |  | logcn.d |  |-  D = ( CC \ ( -oo (,] 0 ) ) | 
						
							| 2 |  | logcnlem.s |  |-  S = if ( A e. RR+ , A , ( abs ` ( Im ` A ) ) ) | 
						
							| 3 |  | logcnlem.t |  |-  T = ( ( abs ` A ) x. ( R / ( 1 + R ) ) ) | 
						
							| 4 |  | logcnlem.a |  |-  ( ph -> A e. D ) | 
						
							| 5 |  | logcnlem.r |  |-  ( ph -> R e. RR+ ) | 
						
							| 6 |  | simpr |  |-  ( ( ph /\ A e. RR+ ) -> A e. RR+ ) | 
						
							| 7 | 1 | ellogdm |  |-  ( A e. D <-> ( A e. CC /\ ( A e. RR -> A e. RR+ ) ) ) | 
						
							| 8 | 7 | simplbi |  |-  ( A e. D -> A e. CC ) | 
						
							| 9 | 4 8 | syl |  |-  ( ph -> A e. CC ) | 
						
							| 10 | 9 | imcld |  |-  ( ph -> ( Im ` A ) e. RR ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ph /\ -. A e. RR+ ) -> ( Im ` A ) e. RR ) | 
						
							| 12 | 11 | recnd |  |-  ( ( ph /\ -. A e. RR+ ) -> ( Im ` A ) e. CC ) | 
						
							| 13 |  | reim0b |  |-  ( A e. CC -> ( A e. RR <-> ( Im ` A ) = 0 ) ) | 
						
							| 14 | 9 13 | syl |  |-  ( ph -> ( A e. RR <-> ( Im ` A ) = 0 ) ) | 
						
							| 15 | 7 | simprbi |  |-  ( A e. D -> ( A e. RR -> A e. RR+ ) ) | 
						
							| 16 | 4 15 | syl |  |-  ( ph -> ( A e. RR -> A e. RR+ ) ) | 
						
							| 17 | 14 16 | sylbird |  |-  ( ph -> ( ( Im ` A ) = 0 -> A e. RR+ ) ) | 
						
							| 18 | 17 | necon3bd |  |-  ( ph -> ( -. A e. RR+ -> ( Im ` A ) =/= 0 ) ) | 
						
							| 19 | 18 | imp |  |-  ( ( ph /\ -. A e. RR+ ) -> ( Im ` A ) =/= 0 ) | 
						
							| 20 | 12 19 | absrpcld |  |-  ( ( ph /\ -. A e. RR+ ) -> ( abs ` ( Im ` A ) ) e. RR+ ) | 
						
							| 21 | 6 20 | ifclda |  |-  ( ph -> if ( A e. RR+ , A , ( abs ` ( Im ` A ) ) ) e. RR+ ) | 
						
							| 22 | 2 21 | eqeltrid |  |-  ( ph -> S e. RR+ ) | 
						
							| 23 | 1 | logdmn0 |  |-  ( A e. D -> A =/= 0 ) | 
						
							| 24 | 4 23 | syl |  |-  ( ph -> A =/= 0 ) | 
						
							| 25 | 9 24 | absrpcld |  |-  ( ph -> ( abs ` A ) e. RR+ ) | 
						
							| 26 |  | 1rp |  |-  1 e. RR+ | 
						
							| 27 |  | rpaddcl |  |-  ( ( 1 e. RR+ /\ R e. RR+ ) -> ( 1 + R ) e. RR+ ) | 
						
							| 28 | 26 5 27 | sylancr |  |-  ( ph -> ( 1 + R ) e. RR+ ) | 
						
							| 29 | 5 28 | rpdivcld |  |-  ( ph -> ( R / ( 1 + R ) ) e. RR+ ) | 
						
							| 30 | 25 29 | rpmulcld |  |-  ( ph -> ( ( abs ` A ) x. ( R / ( 1 + R ) ) ) e. RR+ ) | 
						
							| 31 | 3 30 | eqeltrid |  |-  ( ph -> T e. RR+ ) | 
						
							| 32 | 22 31 | ifcld |  |-  ( ph -> if ( S <_ T , S , T ) e. RR+ ) |