Step |
Hyp |
Ref |
Expression |
1 |
|
rpcn |
|- ( A e. RR+ -> A e. CC ) |
2 |
1
|
adantr |
|- ( ( A e. RR+ /\ B e. RR ) -> A e. CC ) |
3 |
|
rpne0 |
|- ( A e. RR+ -> A =/= 0 ) |
4 |
3
|
adantr |
|- ( ( A e. RR+ /\ B e. RR ) -> A =/= 0 ) |
5 |
|
simpr |
|- ( ( A e. RR+ /\ B e. RR ) -> B e. RR ) |
6 |
5
|
recnd |
|- ( ( A e. RR+ /\ B e. RR ) -> B e. CC ) |
7 |
|
cxpef |
|- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) |
8 |
2 4 6 7
|
syl3anc |
|- ( ( A e. RR+ /\ B e. RR ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) |
9 |
8
|
fveq2d |
|- ( ( A e. RR+ /\ B e. RR ) -> ( log ` ( A ^c B ) ) = ( log ` ( exp ` ( B x. ( log ` A ) ) ) ) ) |
10 |
|
id |
|- ( B e. RR -> B e. RR ) |
11 |
|
relogcl |
|- ( A e. RR+ -> ( log ` A ) e. RR ) |
12 |
|
remulcl |
|- ( ( B e. RR /\ ( log ` A ) e. RR ) -> ( B x. ( log ` A ) ) e. RR ) |
13 |
10 11 12
|
syl2anr |
|- ( ( A e. RR+ /\ B e. RR ) -> ( B x. ( log ` A ) ) e. RR ) |
14 |
13
|
relogefd |
|- ( ( A e. RR+ /\ B e. RR ) -> ( log ` ( exp ` ( B x. ( log ` A ) ) ) ) = ( B x. ( log ` A ) ) ) |
15 |
9 14
|
eqtrd |
|- ( ( A e. RR+ /\ B e. RR ) -> ( log ` ( A ^c B ) ) = ( B x. ( log ` A ) ) ) |