Metamath Proof Explorer


Theorem logcxp

Description: Logarithm of a complex power. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion logcxp
|- ( ( A e. RR+ /\ B e. RR ) -> ( log ` ( A ^c B ) ) = ( B x. ( log ` A ) ) )

Proof

Step Hyp Ref Expression
1 rpcn
 |-  ( A e. RR+ -> A e. CC )
2 1 adantr
 |-  ( ( A e. RR+ /\ B e. RR ) -> A e. CC )
3 rpne0
 |-  ( A e. RR+ -> A =/= 0 )
4 3 adantr
 |-  ( ( A e. RR+ /\ B e. RR ) -> A =/= 0 )
5 simpr
 |-  ( ( A e. RR+ /\ B e. RR ) -> B e. RR )
6 5 recnd
 |-  ( ( A e. RR+ /\ B e. RR ) -> B e. CC )
7 cxpef
 |-  ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) )
8 2 4 6 7 syl3anc
 |-  ( ( A e. RR+ /\ B e. RR ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) )
9 8 fveq2d
 |-  ( ( A e. RR+ /\ B e. RR ) -> ( log ` ( A ^c B ) ) = ( log ` ( exp ` ( B x. ( log ` A ) ) ) ) )
10 id
 |-  ( B e. RR -> B e. RR )
11 relogcl
 |-  ( A e. RR+ -> ( log ` A ) e. RR )
12 remulcl
 |-  ( ( B e. RR /\ ( log ` A ) e. RR ) -> ( B x. ( log ` A ) ) e. RR )
13 10 11 12 syl2anr
 |-  ( ( A e. RR+ /\ B e. RR ) -> ( B x. ( log ` A ) ) e. RR )
14 13 relogefd
 |-  ( ( A e. RR+ /\ B e. RR ) -> ( log ` ( exp ` ( B x. ( log ` A ) ) ) ) = ( B x. ( log ` A ) ) )
15 9 14 eqtrd
 |-  ( ( A e. RR+ /\ B e. RR ) -> ( log ` ( A ^c B ) ) = ( B x. ( log ` A ) ) )