| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpre |  |-  ( A e. RR+ -> A e. RR ) | 
						
							| 2 |  | rpge0 |  |-  ( A e. RR+ -> 0 <_ A ) | 
						
							| 3 | 1 2 | ge0p1rpd |  |-  ( A e. RR+ -> ( A + 1 ) e. RR+ ) | 
						
							| 4 | 3 | rprecred |  |-  ( A e. RR+ -> ( 1 / ( A + 1 ) ) e. RR ) | 
						
							| 5 |  | 1red |  |-  ( A e. RR+ -> 1 e. RR ) | 
						
							| 6 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 7 | 6 | a1i |  |-  ( A e. RR+ -> 0 <_ 1 ) | 
						
							| 8 | 5 3 7 | divge0d |  |-  ( A e. RR+ -> 0 <_ ( 1 / ( A + 1 ) ) ) | 
						
							| 9 |  | id |  |-  ( A e. RR+ -> A e. RR+ ) | 
						
							| 10 | 5 9 | ltaddrp2d |  |-  ( A e. RR+ -> 1 < ( A + 1 ) ) | 
						
							| 11 | 1 5 | readdcld |  |-  ( A e. RR+ -> ( A + 1 ) e. RR ) | 
						
							| 12 | 11 | recnd |  |-  ( A e. RR+ -> ( A + 1 ) e. CC ) | 
						
							| 13 | 12 | mulridd |  |-  ( A e. RR+ -> ( ( A + 1 ) x. 1 ) = ( A + 1 ) ) | 
						
							| 14 | 10 13 | breqtrrd |  |-  ( A e. RR+ -> 1 < ( ( A + 1 ) x. 1 ) ) | 
						
							| 15 | 5 5 3 | ltdivmuld |  |-  ( A e. RR+ -> ( ( 1 / ( A + 1 ) ) < 1 <-> 1 < ( ( A + 1 ) x. 1 ) ) ) | 
						
							| 16 | 14 15 | mpbird |  |-  ( A e. RR+ -> ( 1 / ( A + 1 ) ) < 1 ) | 
						
							| 17 | 4 8 16 | eflegeo |  |-  ( A e. RR+ -> ( exp ` ( 1 / ( A + 1 ) ) ) <_ ( 1 / ( 1 - ( 1 / ( A + 1 ) ) ) ) ) | 
						
							| 18 | 5 | recnd |  |-  ( A e. RR+ -> 1 e. CC ) | 
						
							| 19 | 3 | rpne0d |  |-  ( A e. RR+ -> ( A + 1 ) =/= 0 ) | 
						
							| 20 | 12 18 12 19 | divsubdird |  |-  ( A e. RR+ -> ( ( ( A + 1 ) - 1 ) / ( A + 1 ) ) = ( ( ( A + 1 ) / ( A + 1 ) ) - ( 1 / ( A + 1 ) ) ) ) | 
						
							| 21 | 1 | recnd |  |-  ( A e. RR+ -> A e. CC ) | 
						
							| 22 | 21 18 | pncand |  |-  ( A e. RR+ -> ( ( A + 1 ) - 1 ) = A ) | 
						
							| 23 | 22 | oveq1d |  |-  ( A e. RR+ -> ( ( ( A + 1 ) - 1 ) / ( A + 1 ) ) = ( A / ( A + 1 ) ) ) | 
						
							| 24 | 12 19 | dividd |  |-  ( A e. RR+ -> ( ( A + 1 ) / ( A + 1 ) ) = 1 ) | 
						
							| 25 | 24 | oveq1d |  |-  ( A e. RR+ -> ( ( ( A + 1 ) / ( A + 1 ) ) - ( 1 / ( A + 1 ) ) ) = ( 1 - ( 1 / ( A + 1 ) ) ) ) | 
						
							| 26 | 20 23 25 | 3eqtr3rd |  |-  ( A e. RR+ -> ( 1 - ( 1 / ( A + 1 ) ) ) = ( A / ( A + 1 ) ) ) | 
						
							| 27 | 26 | oveq2d |  |-  ( A e. RR+ -> ( 1 / ( 1 - ( 1 / ( A + 1 ) ) ) ) = ( 1 / ( A / ( A + 1 ) ) ) ) | 
						
							| 28 |  | rpne0 |  |-  ( A e. RR+ -> A =/= 0 ) | 
						
							| 29 | 21 12 28 19 | recdivd |  |-  ( A e. RR+ -> ( 1 / ( A / ( A + 1 ) ) ) = ( ( A + 1 ) / A ) ) | 
						
							| 30 | 27 29 | eqtrd |  |-  ( A e. RR+ -> ( 1 / ( 1 - ( 1 / ( A + 1 ) ) ) ) = ( ( A + 1 ) / A ) ) | 
						
							| 31 | 17 30 | breqtrd |  |-  ( A e. RR+ -> ( exp ` ( 1 / ( A + 1 ) ) ) <_ ( ( A + 1 ) / A ) ) | 
						
							| 32 | 4 | rpefcld |  |-  ( A e. RR+ -> ( exp ` ( 1 / ( A + 1 ) ) ) e. RR+ ) | 
						
							| 33 | 3 9 | rpdivcld |  |-  ( A e. RR+ -> ( ( A + 1 ) / A ) e. RR+ ) | 
						
							| 34 | 32 33 | logled |  |-  ( A e. RR+ -> ( ( exp ` ( 1 / ( A + 1 ) ) ) <_ ( ( A + 1 ) / A ) <-> ( log ` ( exp ` ( 1 / ( A + 1 ) ) ) ) <_ ( log ` ( ( A + 1 ) / A ) ) ) ) | 
						
							| 35 | 31 34 | mpbid |  |-  ( A e. RR+ -> ( log ` ( exp ` ( 1 / ( A + 1 ) ) ) ) <_ ( log ` ( ( A + 1 ) / A ) ) ) | 
						
							| 36 | 4 | relogefd |  |-  ( A e. RR+ -> ( log ` ( exp ` ( 1 / ( A + 1 ) ) ) ) = ( 1 / ( A + 1 ) ) ) | 
						
							| 37 | 3 9 | relogdivd |  |-  ( A e. RR+ -> ( log ` ( ( A + 1 ) / A ) ) = ( ( log ` ( A + 1 ) ) - ( log ` A ) ) ) | 
						
							| 38 | 35 36 37 | 3brtr3d |  |-  ( A e. RR+ -> ( 1 / ( A + 1 ) ) <_ ( ( log ` ( A + 1 ) ) - ( log ` A ) ) ) |