Step |
Hyp |
Ref |
Expression |
1 |
|
rpre |
|- ( A e. RR+ -> A e. RR ) |
2 |
|
rpge0 |
|- ( A e. RR+ -> 0 <_ A ) |
3 |
1 2
|
ge0p1rpd |
|- ( A e. RR+ -> ( A + 1 ) e. RR+ ) |
4 |
3
|
rprecred |
|- ( A e. RR+ -> ( 1 / ( A + 1 ) ) e. RR ) |
5 |
|
1red |
|- ( A e. RR+ -> 1 e. RR ) |
6 |
|
0le1 |
|- 0 <_ 1 |
7 |
6
|
a1i |
|- ( A e. RR+ -> 0 <_ 1 ) |
8 |
5 3 7
|
divge0d |
|- ( A e. RR+ -> 0 <_ ( 1 / ( A + 1 ) ) ) |
9 |
|
id |
|- ( A e. RR+ -> A e. RR+ ) |
10 |
5 9
|
ltaddrp2d |
|- ( A e. RR+ -> 1 < ( A + 1 ) ) |
11 |
1 5
|
readdcld |
|- ( A e. RR+ -> ( A + 1 ) e. RR ) |
12 |
11
|
recnd |
|- ( A e. RR+ -> ( A + 1 ) e. CC ) |
13 |
12
|
mulid1d |
|- ( A e. RR+ -> ( ( A + 1 ) x. 1 ) = ( A + 1 ) ) |
14 |
10 13
|
breqtrrd |
|- ( A e. RR+ -> 1 < ( ( A + 1 ) x. 1 ) ) |
15 |
5 5 3
|
ltdivmuld |
|- ( A e. RR+ -> ( ( 1 / ( A + 1 ) ) < 1 <-> 1 < ( ( A + 1 ) x. 1 ) ) ) |
16 |
14 15
|
mpbird |
|- ( A e. RR+ -> ( 1 / ( A + 1 ) ) < 1 ) |
17 |
4 8 16
|
eflegeo |
|- ( A e. RR+ -> ( exp ` ( 1 / ( A + 1 ) ) ) <_ ( 1 / ( 1 - ( 1 / ( A + 1 ) ) ) ) ) |
18 |
5
|
recnd |
|- ( A e. RR+ -> 1 e. CC ) |
19 |
3
|
rpne0d |
|- ( A e. RR+ -> ( A + 1 ) =/= 0 ) |
20 |
12 18 12 19
|
divsubdird |
|- ( A e. RR+ -> ( ( ( A + 1 ) - 1 ) / ( A + 1 ) ) = ( ( ( A + 1 ) / ( A + 1 ) ) - ( 1 / ( A + 1 ) ) ) ) |
21 |
1
|
recnd |
|- ( A e. RR+ -> A e. CC ) |
22 |
21 18
|
pncand |
|- ( A e. RR+ -> ( ( A + 1 ) - 1 ) = A ) |
23 |
22
|
oveq1d |
|- ( A e. RR+ -> ( ( ( A + 1 ) - 1 ) / ( A + 1 ) ) = ( A / ( A + 1 ) ) ) |
24 |
12 19
|
dividd |
|- ( A e. RR+ -> ( ( A + 1 ) / ( A + 1 ) ) = 1 ) |
25 |
24
|
oveq1d |
|- ( A e. RR+ -> ( ( ( A + 1 ) / ( A + 1 ) ) - ( 1 / ( A + 1 ) ) ) = ( 1 - ( 1 / ( A + 1 ) ) ) ) |
26 |
20 23 25
|
3eqtr3rd |
|- ( A e. RR+ -> ( 1 - ( 1 / ( A + 1 ) ) ) = ( A / ( A + 1 ) ) ) |
27 |
26
|
oveq2d |
|- ( A e. RR+ -> ( 1 / ( 1 - ( 1 / ( A + 1 ) ) ) ) = ( 1 / ( A / ( A + 1 ) ) ) ) |
28 |
|
rpne0 |
|- ( A e. RR+ -> A =/= 0 ) |
29 |
21 12 28 19
|
recdivd |
|- ( A e. RR+ -> ( 1 / ( A / ( A + 1 ) ) ) = ( ( A + 1 ) / A ) ) |
30 |
27 29
|
eqtrd |
|- ( A e. RR+ -> ( 1 / ( 1 - ( 1 / ( A + 1 ) ) ) ) = ( ( A + 1 ) / A ) ) |
31 |
17 30
|
breqtrd |
|- ( A e. RR+ -> ( exp ` ( 1 / ( A + 1 ) ) ) <_ ( ( A + 1 ) / A ) ) |
32 |
4
|
rpefcld |
|- ( A e. RR+ -> ( exp ` ( 1 / ( A + 1 ) ) ) e. RR+ ) |
33 |
3 9
|
rpdivcld |
|- ( A e. RR+ -> ( ( A + 1 ) / A ) e. RR+ ) |
34 |
32 33
|
logled |
|- ( A e. RR+ -> ( ( exp ` ( 1 / ( A + 1 ) ) ) <_ ( ( A + 1 ) / A ) <-> ( log ` ( exp ` ( 1 / ( A + 1 ) ) ) ) <_ ( log ` ( ( A + 1 ) / A ) ) ) ) |
35 |
31 34
|
mpbid |
|- ( A e. RR+ -> ( log ` ( exp ` ( 1 / ( A + 1 ) ) ) ) <_ ( log ` ( ( A + 1 ) / A ) ) ) |
36 |
4
|
relogefd |
|- ( A e. RR+ -> ( log ` ( exp ` ( 1 / ( A + 1 ) ) ) ) = ( 1 / ( A + 1 ) ) ) |
37 |
3 9
|
relogdivd |
|- ( A e. RR+ -> ( log ` ( ( A + 1 ) / A ) ) = ( ( log ` ( A + 1 ) ) - ( log ` A ) ) ) |
38 |
35 36 37
|
3brtr3d |
|- ( A e. RR+ -> ( 1 / ( A + 1 ) ) <_ ( ( log ` ( A + 1 ) ) - ( log ` A ) ) ) |