| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2re |
|- 2 e. RR |
| 2 |
|
fzfid |
|- ( N e. NN -> ( 1 ... N ) e. Fin ) |
| 3 |
|
elfzuz |
|- ( n e. ( 1 ... N ) -> n e. ( ZZ>= ` 1 ) ) |
| 4 |
3
|
adantl |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> n e. ( ZZ>= ` 1 ) ) |
| 5 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 6 |
4 5
|
eleqtrrdi |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> n e. NN ) |
| 7 |
6
|
nnrpd |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> n e. RR+ ) |
| 8 |
7
|
relogcld |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( log ` n ) e. RR ) |
| 9 |
8 6
|
nndivred |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( ( log ` n ) / n ) e. RR ) |
| 10 |
2 9
|
fsumrecl |
|- ( N e. NN -> sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) e. RR ) |
| 11 |
|
remulcl |
|- ( ( 2 e. RR /\ sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) e. RR ) -> ( 2 x. sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) ) e. RR ) |
| 12 |
1 10 11
|
sylancr |
|- ( N e. NN -> ( 2 x. sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) ) e. RR ) |
| 13 |
|
elfznn |
|- ( i e. ( 1 ... N ) -> i e. NN ) |
| 14 |
13
|
adantl |
|- ( ( N e. NN /\ i e. ( 1 ... N ) ) -> i e. NN ) |
| 15 |
14
|
nnrecred |
|- ( ( N e. NN /\ i e. ( 1 ... N ) ) -> ( 1 / i ) e. RR ) |
| 16 |
2 15
|
fsumrecl |
|- ( N e. NN -> sum_ i e. ( 1 ... N ) ( 1 / i ) e. RR ) |
| 17 |
16
|
resqcld |
|- ( N e. NN -> ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) e. RR ) |
| 18 |
|
nnrp |
|- ( N e. NN -> N e. RR+ ) |
| 19 |
18
|
relogcld |
|- ( N e. NN -> ( log ` N ) e. RR ) |
| 20 |
|
peano2re |
|- ( ( log ` N ) e. RR -> ( ( log ` N ) + 1 ) e. RR ) |
| 21 |
19 20
|
syl |
|- ( N e. NN -> ( ( log ` N ) + 1 ) e. RR ) |
| 22 |
21
|
resqcld |
|- ( N e. NN -> ( ( ( log ` N ) + 1 ) ^ 2 ) e. RR ) |
| 23 |
10
|
recnd |
|- ( N e. NN -> sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) e. CC ) |
| 24 |
23
|
2timesd |
|- ( N e. NN -> ( 2 x. sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) ) = ( sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) + sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) ) ) |
| 25 |
|
fzfid |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( 1 ... n ) e. Fin ) |
| 26 |
|
elfznn |
|- ( i e. ( 1 ... n ) -> i e. NN ) |
| 27 |
26
|
adantl |
|- ( ( ( N e. NN /\ n e. ( 1 ... N ) ) /\ i e. ( 1 ... n ) ) -> i e. NN ) |
| 28 |
27
|
nnrecred |
|- ( ( ( N e. NN /\ n e. ( 1 ... N ) ) /\ i e. ( 1 ... n ) ) -> ( 1 / i ) e. RR ) |
| 29 |
25 28
|
fsumrecl |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> sum_ i e. ( 1 ... n ) ( 1 / i ) e. RR ) |
| 30 |
29 6
|
nndivred |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) e. RR ) |
| 31 |
2 30
|
fsumrecl |
|- ( N e. NN -> sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) e. RR ) |
| 32 |
|
fzfid |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( 1 ... ( n - 1 ) ) e. Fin ) |
| 33 |
|
elfznn |
|- ( i e. ( 1 ... ( n - 1 ) ) -> i e. NN ) |
| 34 |
33
|
adantl |
|- ( ( ( N e. NN /\ n e. ( 1 ... N ) ) /\ i e. ( 1 ... ( n - 1 ) ) ) -> i e. NN ) |
| 35 |
34
|
nnrecred |
|- ( ( ( N e. NN /\ n e. ( 1 ... N ) ) /\ i e. ( 1 ... ( n - 1 ) ) ) -> ( 1 / i ) e. RR ) |
| 36 |
32 35
|
fsumrecl |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) e. RR ) |
| 37 |
36 6
|
nndivred |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) e. RR ) |
| 38 |
2 37
|
fsumrecl |
|- ( N e. NN -> sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) e. RR ) |
| 39 |
6
|
nncnd |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> n e. CC ) |
| 40 |
|
ax-1cn |
|- 1 e. CC |
| 41 |
|
npcan |
|- ( ( n e. CC /\ 1 e. CC ) -> ( ( n - 1 ) + 1 ) = n ) |
| 42 |
39 40 41
|
sylancl |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( ( n - 1 ) + 1 ) = n ) |
| 43 |
42
|
fveq2d |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( log ` ( ( n - 1 ) + 1 ) ) = ( log ` n ) ) |
| 44 |
43
|
oveq2d |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) - ( log ` ( ( n - 1 ) + 1 ) ) ) = ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) - ( log ` n ) ) ) |
| 45 |
|
nnm1nn0 |
|- ( n e. NN -> ( n - 1 ) e. NN0 ) |
| 46 |
|
harmonicbnd3 |
|- ( ( n - 1 ) e. NN0 -> ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) - ( log ` ( ( n - 1 ) + 1 ) ) ) e. ( 0 [,] gamma ) ) |
| 47 |
6 45 46
|
3syl |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) - ( log ` ( ( n - 1 ) + 1 ) ) ) e. ( 0 [,] gamma ) ) |
| 48 |
44 47
|
eqeltrrd |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) - ( log ` n ) ) e. ( 0 [,] gamma ) ) |
| 49 |
|
0re |
|- 0 e. RR |
| 50 |
|
emre |
|- gamma e. RR |
| 51 |
49 50
|
elicc2i |
|- ( ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) - ( log ` n ) ) e. ( 0 [,] gamma ) <-> ( ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) - ( log ` n ) ) e. RR /\ 0 <_ ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) - ( log ` n ) ) /\ ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) - ( log ` n ) ) <_ gamma ) ) |
| 52 |
51
|
simp2bi |
|- ( ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) - ( log ` n ) ) e. ( 0 [,] gamma ) -> 0 <_ ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) - ( log ` n ) ) ) |
| 53 |
48 52
|
syl |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> 0 <_ ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) - ( log ` n ) ) ) |
| 54 |
36 8
|
subge0d |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( 0 <_ ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) - ( log ` n ) ) <-> ( log ` n ) <_ sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) ) |
| 55 |
53 54
|
mpbid |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( log ` n ) <_ sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) |
| 56 |
8 36 7 55
|
lediv1dd |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( ( log ` n ) / n ) <_ ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) ) |
| 57 |
27
|
nnrpd |
|- ( ( ( N e. NN /\ n e. ( 1 ... N ) ) /\ i e. ( 1 ... n ) ) -> i e. RR+ ) |
| 58 |
57
|
rpreccld |
|- ( ( ( N e. NN /\ n e. ( 1 ... N ) ) /\ i e. ( 1 ... n ) ) -> ( 1 / i ) e. RR+ ) |
| 59 |
58
|
rpge0d |
|- ( ( ( N e. NN /\ n e. ( 1 ... N ) ) /\ i e. ( 1 ... n ) ) -> 0 <_ ( 1 / i ) ) |
| 60 |
|
elfzelz |
|- ( n e. ( 1 ... N ) -> n e. ZZ ) |
| 61 |
60
|
adantl |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> n e. ZZ ) |
| 62 |
|
peano2zm |
|- ( n e. ZZ -> ( n - 1 ) e. ZZ ) |
| 63 |
61 62
|
syl |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( n - 1 ) e. ZZ ) |
| 64 |
6
|
nnred |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> n e. RR ) |
| 65 |
64
|
lem1d |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( n - 1 ) <_ n ) |
| 66 |
|
eluz2 |
|- ( n e. ( ZZ>= ` ( n - 1 ) ) <-> ( ( n - 1 ) e. ZZ /\ n e. ZZ /\ ( n - 1 ) <_ n ) ) |
| 67 |
63 61 65 66
|
syl3anbrc |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> n e. ( ZZ>= ` ( n - 1 ) ) ) |
| 68 |
|
fzss2 |
|- ( n e. ( ZZ>= ` ( n - 1 ) ) -> ( 1 ... ( n - 1 ) ) C_ ( 1 ... n ) ) |
| 69 |
67 68
|
syl |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( 1 ... ( n - 1 ) ) C_ ( 1 ... n ) ) |
| 70 |
25 28 59 69
|
fsumless |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) <_ sum_ i e. ( 1 ... n ) ( 1 / i ) ) |
| 71 |
6
|
nngt0d |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> 0 < n ) |
| 72 |
|
lediv1 |
|- ( ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) e. RR /\ sum_ i e. ( 1 ... n ) ( 1 / i ) e. RR /\ ( n e. RR /\ 0 < n ) ) -> ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) <_ sum_ i e. ( 1 ... n ) ( 1 / i ) <-> ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) <_ ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) ) ) |
| 73 |
36 29 64 71 72
|
syl112anc |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) <_ sum_ i e. ( 1 ... n ) ( 1 / i ) <-> ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) <_ ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) ) ) |
| 74 |
70 73
|
mpbid |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) <_ ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) ) |
| 75 |
9 37 30 56 74
|
letrd |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( ( log ` n ) / n ) <_ ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) ) |
| 76 |
2 9 30 75
|
fsumle |
|- ( N e. NN -> sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) <_ sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) ) |
| 77 |
2 9 37 56
|
fsumle |
|- ( N e. NN -> sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) <_ sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) ) |
| 78 |
10 10 31 38 76 77
|
le2addd |
|- ( N e. NN -> ( sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) + sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) ) <_ ( sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) + sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) ) ) |
| 79 |
|
oveq1 |
|- ( m = n -> ( m - 1 ) = ( n - 1 ) ) |
| 80 |
79
|
oveq2d |
|- ( m = n -> ( 1 ... ( m - 1 ) ) = ( 1 ... ( n - 1 ) ) ) |
| 81 |
80
|
sumeq1d |
|- ( m = n -> sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) = sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) |
| 82 |
81 81
|
jca |
|- ( m = n -> ( sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) = sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) /\ sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) = sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) ) |
| 83 |
|
oveq1 |
|- ( m = ( n + 1 ) -> ( m - 1 ) = ( ( n + 1 ) - 1 ) ) |
| 84 |
83
|
oveq2d |
|- ( m = ( n + 1 ) -> ( 1 ... ( m - 1 ) ) = ( 1 ... ( ( n + 1 ) - 1 ) ) ) |
| 85 |
84
|
sumeq1d |
|- ( m = ( n + 1 ) -> sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) = sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) ) |
| 86 |
85 85
|
jca |
|- ( m = ( n + 1 ) -> ( sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) = sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) /\ sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) = sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) ) ) |
| 87 |
|
oveq1 |
|- ( m = 1 -> ( m - 1 ) = ( 1 - 1 ) ) |
| 88 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 89 |
87 88
|
eqtrdi |
|- ( m = 1 -> ( m - 1 ) = 0 ) |
| 90 |
89
|
oveq2d |
|- ( m = 1 -> ( 1 ... ( m - 1 ) ) = ( 1 ... 0 ) ) |
| 91 |
|
fz10 |
|- ( 1 ... 0 ) = (/) |
| 92 |
90 91
|
eqtrdi |
|- ( m = 1 -> ( 1 ... ( m - 1 ) ) = (/) ) |
| 93 |
92
|
sumeq1d |
|- ( m = 1 -> sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) = sum_ i e. (/) ( 1 / i ) ) |
| 94 |
|
sum0 |
|- sum_ i e. (/) ( 1 / i ) = 0 |
| 95 |
93 94
|
eqtrdi |
|- ( m = 1 -> sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) = 0 ) |
| 96 |
95 95
|
jca |
|- ( m = 1 -> ( sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) = 0 /\ sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) = 0 ) ) |
| 97 |
|
oveq1 |
|- ( m = ( N + 1 ) -> ( m - 1 ) = ( ( N + 1 ) - 1 ) ) |
| 98 |
97
|
oveq2d |
|- ( m = ( N + 1 ) -> ( 1 ... ( m - 1 ) ) = ( 1 ... ( ( N + 1 ) - 1 ) ) ) |
| 99 |
98
|
sumeq1d |
|- ( m = ( N + 1 ) -> sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) = sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) ) |
| 100 |
99 99
|
jca |
|- ( m = ( N + 1 ) -> ( sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) = sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) /\ sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) = sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) ) ) |
| 101 |
|
peano2nn |
|- ( N e. NN -> ( N + 1 ) e. NN ) |
| 102 |
101 5
|
eleqtrdi |
|- ( N e. NN -> ( N + 1 ) e. ( ZZ>= ` 1 ) ) |
| 103 |
|
fzfid |
|- ( ( N e. NN /\ m e. ( 1 ... ( N + 1 ) ) ) -> ( 1 ... ( m - 1 ) ) e. Fin ) |
| 104 |
|
elfznn |
|- ( i e. ( 1 ... ( m - 1 ) ) -> i e. NN ) |
| 105 |
104
|
adantl |
|- ( ( ( N e. NN /\ m e. ( 1 ... ( N + 1 ) ) ) /\ i e. ( 1 ... ( m - 1 ) ) ) -> i e. NN ) |
| 106 |
105
|
nnrecred |
|- ( ( ( N e. NN /\ m e. ( 1 ... ( N + 1 ) ) ) /\ i e. ( 1 ... ( m - 1 ) ) ) -> ( 1 / i ) e. RR ) |
| 107 |
103 106
|
fsumrecl |
|- ( ( N e. NN /\ m e. ( 1 ... ( N + 1 ) ) ) -> sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) e. RR ) |
| 108 |
107
|
recnd |
|- ( ( N e. NN /\ m e. ( 1 ... ( N + 1 ) ) ) -> sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) e. CC ) |
| 109 |
82 86 96 100 102 108 108
|
fsumparts |
|- ( N e. NN -> sum_ n e. ( 1 ..^ ( N + 1 ) ) ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) x. ( sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) - sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) ) = ( ( ( sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) x. sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) ) - ( 0 x. 0 ) ) - sum_ n e. ( 1 ..^ ( N + 1 ) ) ( ( sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) - sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) x. sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) ) ) ) |
| 110 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
| 111 |
|
fzval3 |
|- ( N e. ZZ -> ( 1 ... N ) = ( 1 ..^ ( N + 1 ) ) ) |
| 112 |
110 111
|
syl |
|- ( N e. NN -> ( 1 ... N ) = ( 1 ..^ ( N + 1 ) ) ) |
| 113 |
112
|
eqcomd |
|- ( N e. NN -> ( 1 ..^ ( N + 1 ) ) = ( 1 ... N ) ) |
| 114 |
36
|
recnd |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) e. CC ) |
| 115 |
6
|
nnrecred |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( 1 / n ) e. RR ) |
| 116 |
115
|
recnd |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( 1 / n ) e. CC ) |
| 117 |
|
pncan |
|- ( ( n e. CC /\ 1 e. CC ) -> ( ( n + 1 ) - 1 ) = n ) |
| 118 |
39 40 117
|
sylancl |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( ( n + 1 ) - 1 ) = n ) |
| 119 |
118
|
oveq2d |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( 1 ... ( ( n + 1 ) - 1 ) ) = ( 1 ... n ) ) |
| 120 |
119
|
sumeq1d |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) = sum_ i e. ( 1 ... n ) ( 1 / i ) ) |
| 121 |
28
|
recnd |
|- ( ( ( N e. NN /\ n e. ( 1 ... N ) ) /\ i e. ( 1 ... n ) ) -> ( 1 / i ) e. CC ) |
| 122 |
|
oveq2 |
|- ( i = n -> ( 1 / i ) = ( 1 / n ) ) |
| 123 |
4 121 122
|
fsumm1 |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> sum_ i e. ( 1 ... n ) ( 1 / i ) = ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) + ( 1 / n ) ) ) |
| 124 |
120 123
|
eqtrd |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) = ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) + ( 1 / n ) ) ) |
| 125 |
114 116 124
|
mvrladdd |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) - sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) = ( 1 / n ) ) |
| 126 |
125
|
oveq2d |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) x. ( sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) - sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) ) = ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) x. ( 1 / n ) ) ) |
| 127 |
6
|
nnne0d |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> n =/= 0 ) |
| 128 |
114 39 127
|
divrecd |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) = ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) x. ( 1 / n ) ) ) |
| 129 |
126 128
|
eqtr4d |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) x. ( sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) - sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) ) = ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) ) |
| 130 |
113 129
|
sumeq12rdv |
|- ( N e. NN -> sum_ n e. ( 1 ..^ ( N + 1 ) ) ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) x. ( sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) - sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) ) = sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) ) |
| 131 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
| 132 |
|
pncan |
|- ( ( N e. CC /\ 1 e. CC ) -> ( ( N + 1 ) - 1 ) = N ) |
| 133 |
131 40 132
|
sylancl |
|- ( N e. NN -> ( ( N + 1 ) - 1 ) = N ) |
| 134 |
133
|
oveq2d |
|- ( N e. NN -> ( 1 ... ( ( N + 1 ) - 1 ) ) = ( 1 ... N ) ) |
| 135 |
134
|
sumeq1d |
|- ( N e. NN -> sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) = sum_ i e. ( 1 ... N ) ( 1 / i ) ) |
| 136 |
135 135
|
oveq12d |
|- ( N e. NN -> ( sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) x. sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) ) = ( sum_ i e. ( 1 ... N ) ( 1 / i ) x. sum_ i e. ( 1 ... N ) ( 1 / i ) ) ) |
| 137 |
16
|
recnd |
|- ( N e. NN -> sum_ i e. ( 1 ... N ) ( 1 / i ) e. CC ) |
| 138 |
137
|
sqvald |
|- ( N e. NN -> ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) = ( sum_ i e. ( 1 ... N ) ( 1 / i ) x. sum_ i e. ( 1 ... N ) ( 1 / i ) ) ) |
| 139 |
136 138
|
eqtr4d |
|- ( N e. NN -> ( sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) x. sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) ) = ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) ) |
| 140 |
|
0cn |
|- 0 e. CC |
| 141 |
140
|
mul01i |
|- ( 0 x. 0 ) = 0 |
| 142 |
141
|
a1i |
|- ( N e. NN -> ( 0 x. 0 ) = 0 ) |
| 143 |
139 142
|
oveq12d |
|- ( N e. NN -> ( ( sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) x. sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) ) - ( 0 x. 0 ) ) = ( ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) - 0 ) ) |
| 144 |
137
|
sqcld |
|- ( N e. NN -> ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) e. CC ) |
| 145 |
144
|
subid1d |
|- ( N e. NN -> ( ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) - 0 ) = ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) ) |
| 146 |
143 145
|
eqtrd |
|- ( N e. NN -> ( ( sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) x. sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) ) - ( 0 x. 0 ) ) = ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) ) |
| 147 |
125 120
|
oveq12d |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( ( sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) - sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) x. sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) ) = ( ( 1 / n ) x. sum_ i e. ( 1 ... n ) ( 1 / i ) ) ) |
| 148 |
29
|
recnd |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> sum_ i e. ( 1 ... n ) ( 1 / i ) e. CC ) |
| 149 |
148 39 127
|
divrec2d |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) = ( ( 1 / n ) x. sum_ i e. ( 1 ... n ) ( 1 / i ) ) ) |
| 150 |
147 149
|
eqtr4d |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( ( sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) - sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) x. sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) ) = ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) ) |
| 151 |
113 150
|
sumeq12rdv |
|- ( N e. NN -> sum_ n e. ( 1 ..^ ( N + 1 ) ) ( ( sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) - sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) x. sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) ) = sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) ) |
| 152 |
146 151
|
oveq12d |
|- ( N e. NN -> ( ( ( sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) x. sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) ) - ( 0 x. 0 ) ) - sum_ n e. ( 1 ..^ ( N + 1 ) ) ( ( sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) - sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) x. sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) ) ) = ( ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) - sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) ) ) |
| 153 |
109 130 152
|
3eqtr3rd |
|- ( N e. NN -> ( ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) - sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) ) = sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) ) |
| 154 |
31
|
recnd |
|- ( N e. NN -> sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) e. CC ) |
| 155 |
38
|
recnd |
|- ( N e. NN -> sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) e. CC ) |
| 156 |
144 154 155
|
subaddd |
|- ( N e. NN -> ( ( ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) - sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) ) = sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) <-> ( sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) + sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) ) = ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) ) ) |
| 157 |
153 156
|
mpbid |
|- ( N e. NN -> ( sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) + sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) ) = ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) ) |
| 158 |
78 157
|
breqtrd |
|- ( N e. NN -> ( sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) + sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) ) <_ ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) ) |
| 159 |
24 158
|
eqbrtrd |
|- ( N e. NN -> ( 2 x. sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) ) <_ ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) ) |
| 160 |
|
flid |
|- ( N e. ZZ -> ( |_ ` N ) = N ) |
| 161 |
110 160
|
syl |
|- ( N e. NN -> ( |_ ` N ) = N ) |
| 162 |
161
|
oveq2d |
|- ( N e. NN -> ( 1 ... ( |_ ` N ) ) = ( 1 ... N ) ) |
| 163 |
162
|
sumeq1d |
|- ( N e. NN -> sum_ i e. ( 1 ... ( |_ ` N ) ) ( 1 / i ) = sum_ i e. ( 1 ... N ) ( 1 / i ) ) |
| 164 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
| 165 |
|
nnge1 |
|- ( N e. NN -> 1 <_ N ) |
| 166 |
|
harmonicubnd |
|- ( ( N e. RR /\ 1 <_ N ) -> sum_ i e. ( 1 ... ( |_ ` N ) ) ( 1 / i ) <_ ( ( log ` N ) + 1 ) ) |
| 167 |
164 165 166
|
syl2anc |
|- ( N e. NN -> sum_ i e. ( 1 ... ( |_ ` N ) ) ( 1 / i ) <_ ( ( log ` N ) + 1 ) ) |
| 168 |
163 167
|
eqbrtrrd |
|- ( N e. NN -> sum_ i e. ( 1 ... N ) ( 1 / i ) <_ ( ( log ` N ) + 1 ) ) |
| 169 |
14
|
nnrpd |
|- ( ( N e. NN /\ i e. ( 1 ... N ) ) -> i e. RR+ ) |
| 170 |
169
|
rpreccld |
|- ( ( N e. NN /\ i e. ( 1 ... N ) ) -> ( 1 / i ) e. RR+ ) |
| 171 |
170
|
rpge0d |
|- ( ( N e. NN /\ i e. ( 1 ... N ) ) -> 0 <_ ( 1 / i ) ) |
| 172 |
2 15 171
|
fsumge0 |
|- ( N e. NN -> 0 <_ sum_ i e. ( 1 ... N ) ( 1 / i ) ) |
| 173 |
49
|
a1i |
|- ( N e. NN -> 0 e. RR ) |
| 174 |
|
log1 |
|- ( log ` 1 ) = 0 |
| 175 |
|
1rp |
|- 1 e. RR+ |
| 176 |
|
logleb |
|- ( ( 1 e. RR+ /\ N e. RR+ ) -> ( 1 <_ N <-> ( log ` 1 ) <_ ( log ` N ) ) ) |
| 177 |
175 18 176
|
sylancr |
|- ( N e. NN -> ( 1 <_ N <-> ( log ` 1 ) <_ ( log ` N ) ) ) |
| 178 |
165 177
|
mpbid |
|- ( N e. NN -> ( log ` 1 ) <_ ( log ` N ) ) |
| 179 |
174 178
|
eqbrtrrid |
|- ( N e. NN -> 0 <_ ( log ` N ) ) |
| 180 |
19
|
lep1d |
|- ( N e. NN -> ( log ` N ) <_ ( ( log ` N ) + 1 ) ) |
| 181 |
173 19 21 179 180
|
letrd |
|- ( N e. NN -> 0 <_ ( ( log ` N ) + 1 ) ) |
| 182 |
16 21 172 181
|
le2sqd |
|- ( N e. NN -> ( sum_ i e. ( 1 ... N ) ( 1 / i ) <_ ( ( log ` N ) + 1 ) <-> ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) <_ ( ( ( log ` N ) + 1 ) ^ 2 ) ) ) |
| 183 |
168 182
|
mpbid |
|- ( N e. NN -> ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) <_ ( ( ( log ` N ) + 1 ) ^ 2 ) ) |
| 184 |
12 17 22 159 183
|
letrd |
|- ( N e. NN -> ( 2 x. sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) ) <_ ( ( ( log ` N ) + 1 ) ^ 2 ) ) |
| 185 |
1
|
a1i |
|- ( N e. NN -> 2 e. RR ) |
| 186 |
|
2pos |
|- 0 < 2 |
| 187 |
186
|
a1i |
|- ( N e. NN -> 0 < 2 ) |
| 188 |
|
lemuldiv2 |
|- ( ( sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) e. RR /\ ( ( ( log ` N ) + 1 ) ^ 2 ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( 2 x. sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) ) <_ ( ( ( log ` N ) + 1 ) ^ 2 ) <-> sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) <_ ( ( ( ( log ` N ) + 1 ) ^ 2 ) / 2 ) ) ) |
| 189 |
10 22 185 187 188
|
syl112anc |
|- ( N e. NN -> ( ( 2 x. sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) ) <_ ( ( ( log ` N ) + 1 ) ^ 2 ) <-> sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) <_ ( ( ( ( log ` N ) + 1 ) ^ 2 ) / 2 ) ) ) |
| 190 |
184 189
|
mpbid |
|- ( N e. NN -> sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) <_ ( ( ( ( log ` N ) + 1 ) ^ 2 ) / 2 ) ) |