Step |
Hyp |
Ref |
Expression |
1 |
|
logdivlti |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( log ` B ) / B ) < ( ( log ` A ) / A ) ) |
2 |
1
|
ex |
|- ( ( A e. RR /\ B e. RR /\ _e <_ A ) -> ( A < B -> ( ( log ` B ) / B ) < ( ( log ` A ) / A ) ) ) |
3 |
2
|
3expa |
|- ( ( ( A e. RR /\ B e. RR ) /\ _e <_ A ) -> ( A < B -> ( ( log ` B ) / B ) < ( ( log ` A ) / A ) ) ) |
4 |
3
|
an32s |
|- ( ( ( A e. RR /\ _e <_ A ) /\ B e. RR ) -> ( A < B -> ( ( log ` B ) / B ) < ( ( log ` A ) / A ) ) ) |
5 |
4
|
adantrr |
|- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> ( A < B -> ( ( log ` B ) / B ) < ( ( log ` A ) / A ) ) ) |
6 |
|
fveq2 |
|- ( A = B -> ( log ` A ) = ( log ` B ) ) |
7 |
|
id |
|- ( A = B -> A = B ) |
8 |
6 7
|
oveq12d |
|- ( A = B -> ( ( log ` A ) / A ) = ( ( log ` B ) / B ) ) |
9 |
8
|
eqcomd |
|- ( A = B -> ( ( log ` B ) / B ) = ( ( log ` A ) / A ) ) |
10 |
9
|
a1i |
|- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> ( A = B -> ( ( log ` B ) / B ) = ( ( log ` A ) / A ) ) ) |
11 |
|
logdivlti |
|- ( ( ( B e. RR /\ A e. RR /\ _e <_ B ) /\ B < A ) -> ( ( log ` A ) / A ) < ( ( log ` B ) / B ) ) |
12 |
11
|
ex |
|- ( ( B e. RR /\ A e. RR /\ _e <_ B ) -> ( B < A -> ( ( log ` A ) / A ) < ( ( log ` B ) / B ) ) ) |
13 |
12
|
3expa |
|- ( ( ( B e. RR /\ A e. RR ) /\ _e <_ B ) -> ( B < A -> ( ( log ` A ) / A ) < ( ( log ` B ) / B ) ) ) |
14 |
13
|
an32s |
|- ( ( ( B e. RR /\ _e <_ B ) /\ A e. RR ) -> ( B < A -> ( ( log ` A ) / A ) < ( ( log ` B ) / B ) ) ) |
15 |
14
|
adantrr |
|- ( ( ( B e. RR /\ _e <_ B ) /\ ( A e. RR /\ _e <_ A ) ) -> ( B < A -> ( ( log ` A ) / A ) < ( ( log ` B ) / B ) ) ) |
16 |
15
|
ancoms |
|- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> ( B < A -> ( ( log ` A ) / A ) < ( ( log ` B ) / B ) ) ) |
17 |
10 16
|
orim12d |
|- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> ( ( A = B \/ B < A ) -> ( ( ( log ` B ) / B ) = ( ( log ` A ) / A ) \/ ( ( log ` A ) / A ) < ( ( log ` B ) / B ) ) ) ) |
18 |
17
|
con3d |
|- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> ( -. ( ( ( log ` B ) / B ) = ( ( log ` A ) / A ) \/ ( ( log ` A ) / A ) < ( ( log ` B ) / B ) ) -> -. ( A = B \/ B < A ) ) ) |
19 |
|
simpl |
|- ( ( B e. RR /\ _e <_ B ) -> B e. RR ) |
20 |
|
epos |
|- 0 < _e |
21 |
|
0re |
|- 0 e. RR |
22 |
|
ere |
|- _e e. RR |
23 |
|
ltletr |
|- ( ( 0 e. RR /\ _e e. RR /\ B e. RR ) -> ( ( 0 < _e /\ _e <_ B ) -> 0 < B ) ) |
24 |
21 22 23
|
mp3an12 |
|- ( B e. RR -> ( ( 0 < _e /\ _e <_ B ) -> 0 < B ) ) |
25 |
20 24
|
mpani |
|- ( B e. RR -> ( _e <_ B -> 0 < B ) ) |
26 |
25
|
imp |
|- ( ( B e. RR /\ _e <_ B ) -> 0 < B ) |
27 |
19 26
|
elrpd |
|- ( ( B e. RR /\ _e <_ B ) -> B e. RR+ ) |
28 |
|
relogcl |
|- ( B e. RR+ -> ( log ` B ) e. RR ) |
29 |
|
rerpdivcl |
|- ( ( ( log ` B ) e. RR /\ B e. RR+ ) -> ( ( log ` B ) / B ) e. RR ) |
30 |
28 29
|
mpancom |
|- ( B e. RR+ -> ( ( log ` B ) / B ) e. RR ) |
31 |
27 30
|
syl |
|- ( ( B e. RR /\ _e <_ B ) -> ( ( log ` B ) / B ) e. RR ) |
32 |
|
simpl |
|- ( ( A e. RR /\ _e <_ A ) -> A e. RR ) |
33 |
|
ltletr |
|- ( ( 0 e. RR /\ _e e. RR /\ A e. RR ) -> ( ( 0 < _e /\ _e <_ A ) -> 0 < A ) ) |
34 |
21 22 33
|
mp3an12 |
|- ( A e. RR -> ( ( 0 < _e /\ _e <_ A ) -> 0 < A ) ) |
35 |
20 34
|
mpani |
|- ( A e. RR -> ( _e <_ A -> 0 < A ) ) |
36 |
35
|
imp |
|- ( ( A e. RR /\ _e <_ A ) -> 0 < A ) |
37 |
32 36
|
elrpd |
|- ( ( A e. RR /\ _e <_ A ) -> A e. RR+ ) |
38 |
|
relogcl |
|- ( A e. RR+ -> ( log ` A ) e. RR ) |
39 |
|
rerpdivcl |
|- ( ( ( log ` A ) e. RR /\ A e. RR+ ) -> ( ( log ` A ) / A ) e. RR ) |
40 |
38 39
|
mpancom |
|- ( A e. RR+ -> ( ( log ` A ) / A ) e. RR ) |
41 |
37 40
|
syl |
|- ( ( A e. RR /\ _e <_ A ) -> ( ( log ` A ) / A ) e. RR ) |
42 |
|
axlttri |
|- ( ( ( ( log ` B ) / B ) e. RR /\ ( ( log ` A ) / A ) e. RR ) -> ( ( ( log ` B ) / B ) < ( ( log ` A ) / A ) <-> -. ( ( ( log ` B ) / B ) = ( ( log ` A ) / A ) \/ ( ( log ` A ) / A ) < ( ( log ` B ) / B ) ) ) ) |
43 |
31 41 42
|
syl2anr |
|- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> ( ( ( log ` B ) / B ) < ( ( log ` A ) / A ) <-> -. ( ( ( log ` B ) / B ) = ( ( log ` A ) / A ) \/ ( ( log ` A ) / A ) < ( ( log ` B ) / B ) ) ) ) |
44 |
|
axlttri |
|- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> -. ( A = B \/ B < A ) ) ) |
45 |
44
|
ad2ant2r |
|- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> ( A < B <-> -. ( A = B \/ B < A ) ) ) |
46 |
18 43 45
|
3imtr4d |
|- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> ( ( ( log ` B ) / B ) < ( ( log ` A ) / A ) -> A < B ) ) |
47 |
5 46
|
impbid |
|- ( ( ( A e. RR /\ _e <_ A ) /\ ( B e. RR /\ _e <_ B ) ) -> ( A < B <-> ( ( log ` B ) / B ) < ( ( log ` A ) / A ) ) ) |