Step |
Hyp |
Ref |
Expression |
1 |
|
simpl2 |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> B e. RR ) |
2 |
|
simpl3 |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> _e <_ A ) |
3 |
|
simpr |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> A < B ) |
4 |
|
ere |
|- _e e. RR |
5 |
|
simpl1 |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> A e. RR ) |
6 |
|
lelttr |
|- ( ( _e e. RR /\ A e. RR /\ B e. RR ) -> ( ( _e <_ A /\ A < B ) -> _e < B ) ) |
7 |
4 5 1 6
|
mp3an2i |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( _e <_ A /\ A < B ) -> _e < B ) ) |
8 |
2 3 7
|
mp2and |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> _e < B ) |
9 |
|
epos |
|- 0 < _e |
10 |
|
0re |
|- 0 e. RR |
11 |
|
lttr |
|- ( ( 0 e. RR /\ _e e. RR /\ B e. RR ) -> ( ( 0 < _e /\ _e < B ) -> 0 < B ) ) |
12 |
10 4 1 11
|
mp3an12i |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( 0 < _e /\ _e < B ) -> 0 < B ) ) |
13 |
9 12
|
mpani |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( _e < B -> 0 < B ) ) |
14 |
8 13
|
mpd |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> 0 < B ) |
15 |
1 14
|
elrpd |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> B e. RR+ ) |
16 |
|
ltletr |
|- ( ( 0 e. RR /\ _e e. RR /\ A e. RR ) -> ( ( 0 < _e /\ _e <_ A ) -> 0 < A ) ) |
17 |
10 4 5 16
|
mp3an12i |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( 0 < _e /\ _e <_ A ) -> 0 < A ) ) |
18 |
9 17
|
mpani |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( _e <_ A -> 0 < A ) ) |
19 |
2 18
|
mpd |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> 0 < A ) |
20 |
5 19
|
elrpd |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> A e. RR+ ) |
21 |
15 20
|
rpdivcld |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( B / A ) e. RR+ ) |
22 |
|
relogcl |
|- ( ( B / A ) e. RR+ -> ( log ` ( B / A ) ) e. RR ) |
23 |
21 22
|
syl |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( log ` ( B / A ) ) e. RR ) |
24 |
1 20
|
rerpdivcld |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( B / A ) e. RR ) |
25 |
|
1re |
|- 1 e. RR |
26 |
|
resubcl |
|- ( ( ( B / A ) e. RR /\ 1 e. RR ) -> ( ( B / A ) - 1 ) e. RR ) |
27 |
24 25 26
|
sylancl |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( B / A ) - 1 ) e. RR ) |
28 |
|
relogcl |
|- ( A e. RR+ -> ( log ` A ) e. RR ) |
29 |
20 28
|
syl |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( log ` A ) e. RR ) |
30 |
27 29
|
remulcld |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( ( B / A ) - 1 ) x. ( log ` A ) ) e. RR ) |
31 |
|
reeflog |
|- ( ( B / A ) e. RR+ -> ( exp ` ( log ` ( B / A ) ) ) = ( B / A ) ) |
32 |
21 31
|
syl |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( exp ` ( log ` ( B / A ) ) ) = ( B / A ) ) |
33 |
|
ax-1cn |
|- 1 e. CC |
34 |
24
|
recnd |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( B / A ) e. CC ) |
35 |
|
pncan3 |
|- ( ( 1 e. CC /\ ( B / A ) e. CC ) -> ( 1 + ( ( B / A ) - 1 ) ) = ( B / A ) ) |
36 |
33 34 35
|
sylancr |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( 1 + ( ( B / A ) - 1 ) ) = ( B / A ) ) |
37 |
32 36
|
eqtr4d |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( exp ` ( log ` ( B / A ) ) ) = ( 1 + ( ( B / A ) - 1 ) ) ) |
38 |
5
|
recnd |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> A e. CC ) |
39 |
38
|
mulid2d |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( 1 x. A ) = A ) |
40 |
39 3
|
eqbrtrd |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( 1 x. A ) < B ) |
41 |
|
1red |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> 1 e. RR ) |
42 |
|
ltmuldiv |
|- ( ( 1 e. RR /\ B e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( ( 1 x. A ) < B <-> 1 < ( B / A ) ) ) |
43 |
41 1 5 19 42
|
syl112anc |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( 1 x. A ) < B <-> 1 < ( B / A ) ) ) |
44 |
40 43
|
mpbid |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> 1 < ( B / A ) ) |
45 |
|
difrp |
|- ( ( 1 e. RR /\ ( B / A ) e. RR ) -> ( 1 < ( B / A ) <-> ( ( B / A ) - 1 ) e. RR+ ) ) |
46 |
25 24 45
|
sylancr |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( 1 < ( B / A ) <-> ( ( B / A ) - 1 ) e. RR+ ) ) |
47 |
44 46
|
mpbid |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( B / A ) - 1 ) e. RR+ ) |
48 |
|
efgt1p |
|- ( ( ( B / A ) - 1 ) e. RR+ -> ( 1 + ( ( B / A ) - 1 ) ) < ( exp ` ( ( B / A ) - 1 ) ) ) |
49 |
47 48
|
syl |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( 1 + ( ( B / A ) - 1 ) ) < ( exp ` ( ( B / A ) - 1 ) ) ) |
50 |
37 49
|
eqbrtrd |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( exp ` ( log ` ( B / A ) ) ) < ( exp ` ( ( B / A ) - 1 ) ) ) |
51 |
|
eflt |
|- ( ( ( log ` ( B / A ) ) e. RR /\ ( ( B / A ) - 1 ) e. RR ) -> ( ( log ` ( B / A ) ) < ( ( B / A ) - 1 ) <-> ( exp ` ( log ` ( B / A ) ) ) < ( exp ` ( ( B / A ) - 1 ) ) ) ) |
52 |
23 27 51
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( log ` ( B / A ) ) < ( ( B / A ) - 1 ) <-> ( exp ` ( log ` ( B / A ) ) ) < ( exp ` ( ( B / A ) - 1 ) ) ) ) |
53 |
50 52
|
mpbird |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( log ` ( B / A ) ) < ( ( B / A ) - 1 ) ) |
54 |
27
|
recnd |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( B / A ) - 1 ) e. CC ) |
55 |
54
|
mulid1d |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( ( B / A ) - 1 ) x. 1 ) = ( ( B / A ) - 1 ) ) |
56 |
|
df-e |
|- _e = ( exp ` 1 ) |
57 |
|
reeflog |
|- ( A e. RR+ -> ( exp ` ( log ` A ) ) = A ) |
58 |
20 57
|
syl |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( exp ` ( log ` A ) ) = A ) |
59 |
2 58
|
breqtrrd |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> _e <_ ( exp ` ( log ` A ) ) ) |
60 |
56 59
|
eqbrtrrid |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( exp ` 1 ) <_ ( exp ` ( log ` A ) ) ) |
61 |
|
efle |
|- ( ( 1 e. RR /\ ( log ` A ) e. RR ) -> ( 1 <_ ( log ` A ) <-> ( exp ` 1 ) <_ ( exp ` ( log ` A ) ) ) ) |
62 |
25 29 61
|
sylancr |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( 1 <_ ( log ` A ) <-> ( exp ` 1 ) <_ ( exp ` ( log ` A ) ) ) ) |
63 |
60 62
|
mpbird |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> 1 <_ ( log ` A ) ) |
64 |
|
posdif |
|- ( ( 1 e. RR /\ ( B / A ) e. RR ) -> ( 1 < ( B / A ) <-> 0 < ( ( B / A ) - 1 ) ) ) |
65 |
25 24 64
|
sylancr |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( 1 < ( B / A ) <-> 0 < ( ( B / A ) - 1 ) ) ) |
66 |
44 65
|
mpbid |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> 0 < ( ( B / A ) - 1 ) ) |
67 |
|
lemul2 |
|- ( ( 1 e. RR /\ ( log ` A ) e. RR /\ ( ( ( B / A ) - 1 ) e. RR /\ 0 < ( ( B / A ) - 1 ) ) ) -> ( 1 <_ ( log ` A ) <-> ( ( ( B / A ) - 1 ) x. 1 ) <_ ( ( ( B / A ) - 1 ) x. ( log ` A ) ) ) ) |
68 |
41 29 27 66 67
|
syl112anc |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( 1 <_ ( log ` A ) <-> ( ( ( B / A ) - 1 ) x. 1 ) <_ ( ( ( B / A ) - 1 ) x. ( log ` A ) ) ) ) |
69 |
63 68
|
mpbid |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( ( B / A ) - 1 ) x. 1 ) <_ ( ( ( B / A ) - 1 ) x. ( log ` A ) ) ) |
70 |
55 69
|
eqbrtrrd |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( B / A ) - 1 ) <_ ( ( ( B / A ) - 1 ) x. ( log ` A ) ) ) |
71 |
23 27 30 53 70
|
ltletrd |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( log ` ( B / A ) ) < ( ( ( B / A ) - 1 ) x. ( log ` A ) ) ) |
72 |
|
relogdiv |
|- ( ( B e. RR+ /\ A e. RR+ ) -> ( log ` ( B / A ) ) = ( ( log ` B ) - ( log ` A ) ) ) |
73 |
15 20 72
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( log ` ( B / A ) ) = ( ( log ` B ) - ( log ` A ) ) ) |
74 |
|
1cnd |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> 1 e. CC ) |
75 |
29
|
recnd |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( log ` A ) e. CC ) |
76 |
34 74 75
|
subdird |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( ( B / A ) - 1 ) x. ( log ` A ) ) = ( ( ( B / A ) x. ( log ` A ) ) - ( 1 x. ( log ` A ) ) ) ) |
77 |
1
|
recnd |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> B e. CC ) |
78 |
20
|
rpne0d |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> A =/= 0 ) |
79 |
77 38 75 78
|
div32d |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( B / A ) x. ( log ` A ) ) = ( B x. ( ( log ` A ) / A ) ) ) |
80 |
75
|
mulid2d |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( 1 x. ( log ` A ) ) = ( log ` A ) ) |
81 |
79 80
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( ( B / A ) x. ( log ` A ) ) - ( 1 x. ( log ` A ) ) ) = ( ( B x. ( ( log ` A ) / A ) ) - ( log ` A ) ) ) |
82 |
76 81
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( ( B / A ) - 1 ) x. ( log ` A ) ) = ( ( B x. ( ( log ` A ) / A ) ) - ( log ` A ) ) ) |
83 |
71 73 82
|
3brtr3d |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( log ` B ) - ( log ` A ) ) < ( ( B x. ( ( log ` A ) / A ) ) - ( log ` A ) ) ) |
84 |
|
relogcl |
|- ( B e. RR+ -> ( log ` B ) e. RR ) |
85 |
15 84
|
syl |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( log ` B ) e. RR ) |
86 |
29 20
|
rerpdivcld |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( log ` A ) / A ) e. RR ) |
87 |
1 86
|
remulcld |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( B x. ( ( log ` A ) / A ) ) e. RR ) |
88 |
85 87 29
|
ltsub1d |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( log ` B ) < ( B x. ( ( log ` A ) / A ) ) <-> ( ( log ` B ) - ( log ` A ) ) < ( ( B x. ( ( log ` A ) / A ) ) - ( log ` A ) ) ) ) |
89 |
83 88
|
mpbird |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( log ` B ) < ( B x. ( ( log ` A ) / A ) ) ) |
90 |
85 86 15
|
ltdivmuld |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( ( log ` B ) / B ) < ( ( log ` A ) / A ) <-> ( log ` B ) < ( B x. ( ( log ` A ) / A ) ) ) ) |
91 |
89 90
|
mpbird |
|- ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( log ` B ) / B ) < ( ( log ` A ) / A ) ) |