| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl2 |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> B e. RR ) | 
						
							| 2 |  | simpl3 |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> _e <_ A ) | 
						
							| 3 |  | simpr |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> A < B ) | 
						
							| 4 |  | ere |  |-  _e e. RR | 
						
							| 5 |  | simpl1 |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> A e. RR ) | 
						
							| 6 |  | lelttr |  |-  ( ( _e e. RR /\ A e. RR /\ B e. RR ) -> ( ( _e <_ A /\ A < B ) -> _e < B ) ) | 
						
							| 7 | 4 5 1 6 | mp3an2i |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( _e <_ A /\ A < B ) -> _e < B ) ) | 
						
							| 8 | 2 3 7 | mp2and |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> _e < B ) | 
						
							| 9 |  | epos |  |-  0 < _e | 
						
							| 10 |  | 0re |  |-  0 e. RR | 
						
							| 11 |  | lttr |  |-  ( ( 0 e. RR /\ _e e. RR /\ B e. RR ) -> ( ( 0 < _e /\ _e < B ) -> 0 < B ) ) | 
						
							| 12 | 10 4 1 11 | mp3an12i |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( 0 < _e /\ _e < B ) -> 0 < B ) ) | 
						
							| 13 | 9 12 | mpani |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( _e < B -> 0 < B ) ) | 
						
							| 14 | 8 13 | mpd |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> 0 < B ) | 
						
							| 15 | 1 14 | elrpd |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> B e. RR+ ) | 
						
							| 16 |  | ltletr |  |-  ( ( 0 e. RR /\ _e e. RR /\ A e. RR ) -> ( ( 0 < _e /\ _e <_ A ) -> 0 < A ) ) | 
						
							| 17 | 10 4 5 16 | mp3an12i |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( 0 < _e /\ _e <_ A ) -> 0 < A ) ) | 
						
							| 18 | 9 17 | mpani |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( _e <_ A -> 0 < A ) ) | 
						
							| 19 | 2 18 | mpd |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> 0 < A ) | 
						
							| 20 | 5 19 | elrpd |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> A e. RR+ ) | 
						
							| 21 | 15 20 | rpdivcld |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( B / A ) e. RR+ ) | 
						
							| 22 |  | relogcl |  |-  ( ( B / A ) e. RR+ -> ( log ` ( B / A ) ) e. RR ) | 
						
							| 23 | 21 22 | syl |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( log ` ( B / A ) ) e. RR ) | 
						
							| 24 | 1 20 | rerpdivcld |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( B / A ) e. RR ) | 
						
							| 25 |  | 1re |  |-  1 e. RR | 
						
							| 26 |  | resubcl |  |-  ( ( ( B / A ) e. RR /\ 1 e. RR ) -> ( ( B / A ) - 1 ) e. RR ) | 
						
							| 27 | 24 25 26 | sylancl |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( B / A ) - 1 ) e. RR ) | 
						
							| 28 |  | relogcl |  |-  ( A e. RR+ -> ( log ` A ) e. RR ) | 
						
							| 29 | 20 28 | syl |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( log ` A ) e. RR ) | 
						
							| 30 | 27 29 | remulcld |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( ( B / A ) - 1 ) x. ( log ` A ) ) e. RR ) | 
						
							| 31 |  | reeflog |  |-  ( ( B / A ) e. RR+ -> ( exp ` ( log ` ( B / A ) ) ) = ( B / A ) ) | 
						
							| 32 | 21 31 | syl |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( exp ` ( log ` ( B / A ) ) ) = ( B / A ) ) | 
						
							| 33 |  | ax-1cn |  |-  1 e. CC | 
						
							| 34 | 24 | recnd |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( B / A ) e. CC ) | 
						
							| 35 |  | pncan3 |  |-  ( ( 1 e. CC /\ ( B / A ) e. CC ) -> ( 1 + ( ( B / A ) - 1 ) ) = ( B / A ) ) | 
						
							| 36 | 33 34 35 | sylancr |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( 1 + ( ( B / A ) - 1 ) ) = ( B / A ) ) | 
						
							| 37 | 32 36 | eqtr4d |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( exp ` ( log ` ( B / A ) ) ) = ( 1 + ( ( B / A ) - 1 ) ) ) | 
						
							| 38 | 5 | recnd |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> A e. CC ) | 
						
							| 39 | 38 | mullidd |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( 1 x. A ) = A ) | 
						
							| 40 | 39 3 | eqbrtrd |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( 1 x. A ) < B ) | 
						
							| 41 |  | 1red |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> 1 e. RR ) | 
						
							| 42 |  | ltmuldiv |  |-  ( ( 1 e. RR /\ B e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( ( 1 x. A ) < B <-> 1 < ( B / A ) ) ) | 
						
							| 43 | 41 1 5 19 42 | syl112anc |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( 1 x. A ) < B <-> 1 < ( B / A ) ) ) | 
						
							| 44 | 40 43 | mpbid |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> 1 < ( B / A ) ) | 
						
							| 45 |  | difrp |  |-  ( ( 1 e. RR /\ ( B / A ) e. RR ) -> ( 1 < ( B / A ) <-> ( ( B / A ) - 1 ) e. RR+ ) ) | 
						
							| 46 | 25 24 45 | sylancr |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( 1 < ( B / A ) <-> ( ( B / A ) - 1 ) e. RR+ ) ) | 
						
							| 47 | 44 46 | mpbid |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( B / A ) - 1 ) e. RR+ ) | 
						
							| 48 |  | efgt1p |  |-  ( ( ( B / A ) - 1 ) e. RR+ -> ( 1 + ( ( B / A ) - 1 ) ) < ( exp ` ( ( B / A ) - 1 ) ) ) | 
						
							| 49 | 47 48 | syl |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( 1 + ( ( B / A ) - 1 ) ) < ( exp ` ( ( B / A ) - 1 ) ) ) | 
						
							| 50 | 37 49 | eqbrtrd |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( exp ` ( log ` ( B / A ) ) ) < ( exp ` ( ( B / A ) - 1 ) ) ) | 
						
							| 51 |  | eflt |  |-  ( ( ( log ` ( B / A ) ) e. RR /\ ( ( B / A ) - 1 ) e. RR ) -> ( ( log ` ( B / A ) ) < ( ( B / A ) - 1 ) <-> ( exp ` ( log ` ( B / A ) ) ) < ( exp ` ( ( B / A ) - 1 ) ) ) ) | 
						
							| 52 | 23 27 51 | syl2anc |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( log ` ( B / A ) ) < ( ( B / A ) - 1 ) <-> ( exp ` ( log ` ( B / A ) ) ) < ( exp ` ( ( B / A ) - 1 ) ) ) ) | 
						
							| 53 | 50 52 | mpbird |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( log ` ( B / A ) ) < ( ( B / A ) - 1 ) ) | 
						
							| 54 | 27 | recnd |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( B / A ) - 1 ) e. CC ) | 
						
							| 55 | 54 | mulridd |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( ( B / A ) - 1 ) x. 1 ) = ( ( B / A ) - 1 ) ) | 
						
							| 56 |  | df-e |  |-  _e = ( exp ` 1 ) | 
						
							| 57 |  | reeflog |  |-  ( A e. RR+ -> ( exp ` ( log ` A ) ) = A ) | 
						
							| 58 | 20 57 | syl |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( exp ` ( log ` A ) ) = A ) | 
						
							| 59 | 2 58 | breqtrrd |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> _e <_ ( exp ` ( log ` A ) ) ) | 
						
							| 60 | 56 59 | eqbrtrrid |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( exp ` 1 ) <_ ( exp ` ( log ` A ) ) ) | 
						
							| 61 |  | efle |  |-  ( ( 1 e. RR /\ ( log ` A ) e. RR ) -> ( 1 <_ ( log ` A ) <-> ( exp ` 1 ) <_ ( exp ` ( log ` A ) ) ) ) | 
						
							| 62 | 25 29 61 | sylancr |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( 1 <_ ( log ` A ) <-> ( exp ` 1 ) <_ ( exp ` ( log ` A ) ) ) ) | 
						
							| 63 | 60 62 | mpbird |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> 1 <_ ( log ` A ) ) | 
						
							| 64 |  | posdif |  |-  ( ( 1 e. RR /\ ( B / A ) e. RR ) -> ( 1 < ( B / A ) <-> 0 < ( ( B / A ) - 1 ) ) ) | 
						
							| 65 | 25 24 64 | sylancr |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( 1 < ( B / A ) <-> 0 < ( ( B / A ) - 1 ) ) ) | 
						
							| 66 | 44 65 | mpbid |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> 0 < ( ( B / A ) - 1 ) ) | 
						
							| 67 |  | lemul2 |  |-  ( ( 1 e. RR /\ ( log ` A ) e. RR /\ ( ( ( B / A ) - 1 ) e. RR /\ 0 < ( ( B / A ) - 1 ) ) ) -> ( 1 <_ ( log ` A ) <-> ( ( ( B / A ) - 1 ) x. 1 ) <_ ( ( ( B / A ) - 1 ) x. ( log ` A ) ) ) ) | 
						
							| 68 | 41 29 27 66 67 | syl112anc |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( 1 <_ ( log ` A ) <-> ( ( ( B / A ) - 1 ) x. 1 ) <_ ( ( ( B / A ) - 1 ) x. ( log ` A ) ) ) ) | 
						
							| 69 | 63 68 | mpbid |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( ( B / A ) - 1 ) x. 1 ) <_ ( ( ( B / A ) - 1 ) x. ( log ` A ) ) ) | 
						
							| 70 | 55 69 | eqbrtrrd |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( B / A ) - 1 ) <_ ( ( ( B / A ) - 1 ) x. ( log ` A ) ) ) | 
						
							| 71 | 23 27 30 53 70 | ltletrd |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( log ` ( B / A ) ) < ( ( ( B / A ) - 1 ) x. ( log ` A ) ) ) | 
						
							| 72 |  | relogdiv |  |-  ( ( B e. RR+ /\ A e. RR+ ) -> ( log ` ( B / A ) ) = ( ( log ` B ) - ( log ` A ) ) ) | 
						
							| 73 | 15 20 72 | syl2anc |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( log ` ( B / A ) ) = ( ( log ` B ) - ( log ` A ) ) ) | 
						
							| 74 |  | 1cnd |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> 1 e. CC ) | 
						
							| 75 | 29 | recnd |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( log ` A ) e. CC ) | 
						
							| 76 | 34 74 75 | subdird |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( ( B / A ) - 1 ) x. ( log ` A ) ) = ( ( ( B / A ) x. ( log ` A ) ) - ( 1 x. ( log ` A ) ) ) ) | 
						
							| 77 | 1 | recnd |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> B e. CC ) | 
						
							| 78 | 20 | rpne0d |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> A =/= 0 ) | 
						
							| 79 | 77 38 75 78 | div32d |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( B / A ) x. ( log ` A ) ) = ( B x. ( ( log ` A ) / A ) ) ) | 
						
							| 80 | 75 | mullidd |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( 1 x. ( log ` A ) ) = ( log ` A ) ) | 
						
							| 81 | 79 80 | oveq12d |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( ( B / A ) x. ( log ` A ) ) - ( 1 x. ( log ` A ) ) ) = ( ( B x. ( ( log ` A ) / A ) ) - ( log ` A ) ) ) | 
						
							| 82 | 76 81 | eqtrd |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( ( B / A ) - 1 ) x. ( log ` A ) ) = ( ( B x. ( ( log ` A ) / A ) ) - ( log ` A ) ) ) | 
						
							| 83 | 71 73 82 | 3brtr3d |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( log ` B ) - ( log ` A ) ) < ( ( B x. ( ( log ` A ) / A ) ) - ( log ` A ) ) ) | 
						
							| 84 |  | relogcl |  |-  ( B e. RR+ -> ( log ` B ) e. RR ) | 
						
							| 85 | 15 84 | syl |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( log ` B ) e. RR ) | 
						
							| 86 | 29 20 | rerpdivcld |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( log ` A ) / A ) e. RR ) | 
						
							| 87 | 1 86 | remulcld |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( B x. ( ( log ` A ) / A ) ) e. RR ) | 
						
							| 88 | 85 87 29 | ltsub1d |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( log ` B ) < ( B x. ( ( log ` A ) / A ) ) <-> ( ( log ` B ) - ( log ` A ) ) < ( ( B x. ( ( log ` A ) / A ) ) - ( log ` A ) ) ) ) | 
						
							| 89 | 83 88 | mpbird |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( log ` B ) < ( B x. ( ( log ` A ) / A ) ) ) | 
						
							| 90 | 85 86 15 | ltdivmuld |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( ( log ` B ) / B ) < ( ( log ` A ) / A ) <-> ( log ` B ) < ( B x. ( ( log ` A ) / A ) ) ) ) | 
						
							| 91 | 89 90 | mpbird |  |-  ( ( ( A e. RR /\ B e. RR /\ _e <_ A ) /\ A < B ) -> ( ( log ` B ) / B ) < ( ( log ` A ) / A ) ) |