Metamath Proof Explorer


Theorem logdmnrp

Description: A number in the continuous domain of log is not a strictly negative number. (Contributed by Mario Carneiro, 18-Feb-2015)

Ref Expression
Hypothesis logcn.d
|- D = ( CC \ ( -oo (,] 0 ) )
Assertion logdmnrp
|- ( A e. D -> -. -u A e. RR+ )

Proof

Step Hyp Ref Expression
1 logcn.d
 |-  D = ( CC \ ( -oo (,] 0 ) )
2 eldifn
 |-  ( A e. ( CC \ ( -oo (,] 0 ) ) -> -. A e. ( -oo (,] 0 ) )
3 2 1 eleq2s
 |-  ( A e. D -> -. A e. ( -oo (,] 0 ) )
4 rpre
 |-  ( -u A e. RR+ -> -u A e. RR )
5 1 ellogdm
 |-  ( A e. D <-> ( A e. CC /\ ( A e. RR -> A e. RR+ ) ) )
6 5 simplbi
 |-  ( A e. D -> A e. CC )
7 negreb
 |-  ( A e. CC -> ( -u A e. RR <-> A e. RR ) )
8 6 7 syl
 |-  ( A e. D -> ( -u A e. RR <-> A e. RR ) )
9 4 8 syl5ib
 |-  ( A e. D -> ( -u A e. RR+ -> A e. RR ) )
10 9 imp
 |-  ( ( A e. D /\ -u A e. RR+ ) -> A e. RR )
11 10 mnfltd
 |-  ( ( A e. D /\ -u A e. RR+ ) -> -oo < A )
12 rpgt0
 |-  ( -u A e. RR+ -> 0 < -u A )
13 12 adantl
 |-  ( ( A e. D /\ -u A e. RR+ ) -> 0 < -u A )
14 10 lt0neg1d
 |-  ( ( A e. D /\ -u A e. RR+ ) -> ( A < 0 <-> 0 < -u A ) )
15 13 14 mpbird
 |-  ( ( A e. D /\ -u A e. RR+ ) -> A < 0 )
16 0re
 |-  0 e. RR
17 ltle
 |-  ( ( A e. RR /\ 0 e. RR ) -> ( A < 0 -> A <_ 0 ) )
18 10 16 17 sylancl
 |-  ( ( A e. D /\ -u A e. RR+ ) -> ( A < 0 -> A <_ 0 ) )
19 15 18 mpd
 |-  ( ( A e. D /\ -u A e. RR+ ) -> A <_ 0 )
20 mnfxr
 |-  -oo e. RR*
21 elioc2
 |-  ( ( -oo e. RR* /\ 0 e. RR ) -> ( A e. ( -oo (,] 0 ) <-> ( A e. RR /\ -oo < A /\ A <_ 0 ) ) )
22 20 16 21 mp2an
 |-  ( A e. ( -oo (,] 0 ) <-> ( A e. RR /\ -oo < A /\ A <_ 0 ) )
23 10 11 19 22 syl3anbrc
 |-  ( ( A e. D /\ -u A e. RR+ ) -> A e. ( -oo (,] 0 ) )
24 3 23 mtand
 |-  ( A e. D -> -. -u A e. RR+ )