Step |
Hyp |
Ref |
Expression |
1 |
|
logcn.d |
|- D = ( CC \ ( -oo (,] 0 ) ) |
2 |
|
eldifn |
|- ( A e. ( CC \ ( -oo (,] 0 ) ) -> -. A e. ( -oo (,] 0 ) ) |
3 |
2 1
|
eleq2s |
|- ( A e. D -> -. A e. ( -oo (,] 0 ) ) |
4 |
|
rpre |
|- ( -u A e. RR+ -> -u A e. RR ) |
5 |
1
|
ellogdm |
|- ( A e. D <-> ( A e. CC /\ ( A e. RR -> A e. RR+ ) ) ) |
6 |
5
|
simplbi |
|- ( A e. D -> A e. CC ) |
7 |
|
negreb |
|- ( A e. CC -> ( -u A e. RR <-> A e. RR ) ) |
8 |
6 7
|
syl |
|- ( A e. D -> ( -u A e. RR <-> A e. RR ) ) |
9 |
4 8
|
syl5ib |
|- ( A e. D -> ( -u A e. RR+ -> A e. RR ) ) |
10 |
9
|
imp |
|- ( ( A e. D /\ -u A e. RR+ ) -> A e. RR ) |
11 |
10
|
mnfltd |
|- ( ( A e. D /\ -u A e. RR+ ) -> -oo < A ) |
12 |
|
rpgt0 |
|- ( -u A e. RR+ -> 0 < -u A ) |
13 |
12
|
adantl |
|- ( ( A e. D /\ -u A e. RR+ ) -> 0 < -u A ) |
14 |
10
|
lt0neg1d |
|- ( ( A e. D /\ -u A e. RR+ ) -> ( A < 0 <-> 0 < -u A ) ) |
15 |
13 14
|
mpbird |
|- ( ( A e. D /\ -u A e. RR+ ) -> A < 0 ) |
16 |
|
0re |
|- 0 e. RR |
17 |
|
ltle |
|- ( ( A e. RR /\ 0 e. RR ) -> ( A < 0 -> A <_ 0 ) ) |
18 |
10 16 17
|
sylancl |
|- ( ( A e. D /\ -u A e. RR+ ) -> ( A < 0 -> A <_ 0 ) ) |
19 |
15 18
|
mpd |
|- ( ( A e. D /\ -u A e. RR+ ) -> A <_ 0 ) |
20 |
|
mnfxr |
|- -oo e. RR* |
21 |
|
elioc2 |
|- ( ( -oo e. RR* /\ 0 e. RR ) -> ( A e. ( -oo (,] 0 ) <-> ( A e. RR /\ -oo < A /\ A <_ 0 ) ) ) |
22 |
20 16 21
|
mp2an |
|- ( A e. ( -oo (,] 0 ) <-> ( A e. RR /\ -oo < A /\ A <_ 0 ) ) |
23 |
10 11 19 22
|
syl3anbrc |
|- ( ( A e. D /\ -u A e. RR+ ) -> A e. ( -oo (,] 0 ) ) |
24 |
3 23
|
mtand |
|- ( A e. D -> -. -u A e. RR+ ) |