Step |
Hyp |
Ref |
Expression |
1 |
|
logcn.d |
|- D = ( CC \ ( -oo (,] 0 ) ) |
2 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
3 |
2
|
recld2 |
|- RR e. ( Clsd ` ( TopOpen ` CCfld ) ) |
4 |
|
0re |
|- 0 e. RR |
5 |
|
iocmnfcld |
|- ( 0 e. RR -> ( -oo (,] 0 ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
6 |
4 5
|
ax-mp |
|- ( -oo (,] 0 ) e. ( Clsd ` ( topGen ` ran (,) ) ) |
7 |
2
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
8 |
7
|
fveq2i |
|- ( Clsd ` ( topGen ` ran (,) ) ) = ( Clsd ` ( ( TopOpen ` CCfld ) |`t RR ) ) |
9 |
6 8
|
eleqtri |
|- ( -oo (,] 0 ) e. ( Clsd ` ( ( TopOpen ` CCfld ) |`t RR ) ) |
10 |
|
restcldr |
|- ( ( RR e. ( Clsd ` ( TopOpen ` CCfld ) ) /\ ( -oo (,] 0 ) e. ( Clsd ` ( ( TopOpen ` CCfld ) |`t RR ) ) ) -> ( -oo (,] 0 ) e. ( Clsd ` ( TopOpen ` CCfld ) ) ) |
11 |
3 9 10
|
mp2an |
|- ( -oo (,] 0 ) e. ( Clsd ` ( TopOpen ` CCfld ) ) |
12 |
|
unicntop |
|- CC = U. ( TopOpen ` CCfld ) |
13 |
12
|
cldopn |
|- ( ( -oo (,] 0 ) e. ( Clsd ` ( TopOpen ` CCfld ) ) -> ( CC \ ( -oo (,] 0 ) ) e. ( TopOpen ` CCfld ) ) |
14 |
11 13
|
ax-mp |
|- ( CC \ ( -oo (,] 0 ) ) e. ( TopOpen ` CCfld ) |
15 |
1 14
|
eqeltri |
|- D e. ( TopOpen ` CCfld ) |