Metamath Proof Explorer


Theorem logdmss

Description: The continuity domain of log is a subset of the regular domain of log . (Contributed by Mario Carneiro, 1-Mar-2015)

Ref Expression
Hypothesis logcn.d
|- D = ( CC \ ( -oo (,] 0 ) )
Assertion logdmss
|- D C_ ( CC \ { 0 } )

Proof

Step Hyp Ref Expression
1 logcn.d
 |-  D = ( CC \ ( -oo (,] 0 ) )
2 1 ellogdm
 |-  ( x e. D <-> ( x e. CC /\ ( x e. RR -> x e. RR+ ) ) )
3 2 simplbi
 |-  ( x e. D -> x e. CC )
4 1 logdmn0
 |-  ( x e. D -> x =/= 0 )
5 eldifsn
 |-  ( x e. ( CC \ { 0 } ) <-> ( x e. CC /\ x =/= 0 ) )
6 3 4 5 sylanbrc
 |-  ( x e. D -> x e. ( CC \ { 0 } ) )
7 6 ssriv
 |-  D C_ ( CC \ { 0 } )