Metamath Proof Explorer


Theorem loge

Description: The natural logarithm of _e . One case of Property 1b of Cohen p. 301. (Contributed by Steve Rodriguez, 25-Nov-2007)

Ref Expression
Assertion loge
|- ( log ` _e ) = 1

Proof

Step Hyp Ref Expression
1 df-e
 |-  _e = ( exp ` 1 )
2 1 eqcomi
 |-  ( exp ` 1 ) = _e
3 epr
 |-  _e e. RR+
4 1re
 |-  1 e. RR
5 relogeftb
 |-  ( ( _e e. RR+ /\ 1 e. RR ) -> ( ( log ` _e ) = 1 <-> ( exp ` 1 ) = _e ) )
6 3 4 5 mp2an
 |-  ( ( log ` _e ) = 1 <-> ( exp ` 1 ) = _e )
7 2 6 mpbir
 |-  ( log ` _e ) = 1