Step |
Hyp |
Ref |
Expression |
1 |
|
dflog2 |
|- log = `' ( exp |` ran log ) |
2 |
1
|
fveq1i |
|- ( log ` ( ( exp |` ran log ) ` A ) ) = ( `' ( exp |` ran log ) ` ( ( exp |` ran log ) ` A ) ) |
3 |
|
fvres |
|- ( A e. ran log -> ( ( exp |` ran log ) ` A ) = ( exp ` A ) ) |
4 |
3
|
fveq2d |
|- ( A e. ran log -> ( log ` ( ( exp |` ran log ) ` A ) ) = ( log ` ( exp ` A ) ) ) |
5 |
|
eff1o2 |
|- ( exp |` ran log ) : ran log -1-1-onto-> ( CC \ { 0 } ) |
6 |
|
f1ocnvfv1 |
|- ( ( ( exp |` ran log ) : ran log -1-1-onto-> ( CC \ { 0 } ) /\ A e. ran log ) -> ( `' ( exp |` ran log ) ` ( ( exp |` ran log ) ` A ) ) = A ) |
7 |
5 6
|
mpan |
|- ( A e. ran log -> ( `' ( exp |` ran log ) ` ( ( exp |` ran log ) ` A ) ) = A ) |
8 |
2 4 7
|
3eqtr3a |
|- ( A e. ran log -> ( log ` ( exp ` A ) ) = A ) |