Step |
Hyp |
Ref |
Expression |
1 |
|
eflog |
|- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( log ` A ) ) = A ) |
2 |
1
|
3adant3 |
|- ( ( A e. CC /\ A =/= 0 /\ ( log ` A ) = 0 ) -> ( exp ` ( log ` A ) ) = A ) |
3 |
|
fveq2 |
|- ( ( log ` A ) = 0 -> ( exp ` ( log ` A ) ) = ( exp ` 0 ) ) |
4 |
|
ef0 |
|- ( exp ` 0 ) = 1 |
5 |
3 4
|
eqtrdi |
|- ( ( log ` A ) = 0 -> ( exp ` ( log ` A ) ) = 1 ) |
6 |
5
|
3ad2ant3 |
|- ( ( A e. CC /\ A =/= 0 /\ ( log ` A ) = 0 ) -> ( exp ` ( log ` A ) ) = 1 ) |
7 |
2 6
|
eqtr3d |
|- ( ( A e. CC /\ A =/= 0 /\ ( log ` A ) = 0 ) -> A = 1 ) |