| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							simpl | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> A e. RR+ )  | 
						
						
							| 2 | 
							
								1
							 | 
							rprege0d | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( A e. RR /\ 0 <_ A ) )  | 
						
						
							| 3 | 
							
								
							 | 
							flge0nn0 | 
							 |-  ( ( A e. RR /\ 0 <_ A ) -> ( |_ ` A ) e. NN0 )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							syl | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( |_ ` A ) e. NN0 )  | 
						
						
							| 5 | 
							
								4
							 | 
							faccld | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( ! ` ( |_ ` A ) ) e. NN )  | 
						
						
							| 6 | 
							
								5
							 | 
							nnrpd | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( ! ` ( |_ ` A ) ) e. RR+ )  | 
						
						
							| 7 | 
							
								
							 | 
							relogcl | 
							 |-  ( ( ! ` ( |_ ` A ) ) e. RR+ -> ( log ` ( ! ` ( |_ ` A ) ) ) e. RR )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							syl | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( log ` ( ! ` ( |_ ` A ) ) ) e. RR )  | 
						
						
							| 9 | 
							
								
							 | 
							rpre | 
							 |-  ( A e. RR+ -> A e. RR )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantr | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> A e. RR )  | 
						
						
							| 11 | 
							
								
							 | 
							relogcl | 
							 |-  ( A e. RR+ -> ( log ` A ) e. RR )  | 
						
						
							| 12 | 
							
								11
							 | 
							adantr | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( log ` A ) e. RR )  | 
						
						
							| 13 | 
							
								
							 | 
							peano2rem | 
							 |-  ( ( log ` A ) e. RR -> ( ( log ` A ) - 1 ) e. RR )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							syl | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( ( log ` A ) - 1 ) e. RR )  | 
						
						
							| 15 | 
							
								10 14
							 | 
							remulcld | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( A x. ( ( log ` A ) - 1 ) ) e. RR )  | 
						
						
							| 16 | 
							
								8 15
							 | 
							resubcld | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( ( log ` ( ! ` ( |_ ` A ) ) ) - ( A x. ( ( log ` A ) - 1 ) ) ) e. RR )  | 
						
						
							| 17 | 
							
								16
							 | 
							recnd | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( ( log ` ( ! ` ( |_ ` A ) ) ) - ( A x. ( ( log ` A ) - 1 ) ) ) e. CC )  | 
						
						
							| 18 | 
							
								17
							 | 
							abscld | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( abs ` ( ( log ` ( ! ` ( |_ ` A ) ) ) - ( A x. ( ( log ` A ) - 1 ) ) ) ) e. RR )  | 
						
						
							| 19 | 
							
								
							 | 
							peano2rem | 
							 |-  ( ( abs ` ( ( log ` ( ! ` ( |_ ` A ) ) ) - ( A x. ( ( log ` A ) - 1 ) ) ) ) e. RR -> ( ( abs ` ( ( log ` ( ! ` ( |_ ` A ) ) ) - ( A x. ( ( log ` A ) - 1 ) ) ) ) - 1 ) e. RR )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							syl | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( ( abs ` ( ( log ` ( ! ` ( |_ ` A ) ) ) - ( A x. ( ( log ` A ) - 1 ) ) ) ) - 1 ) e. RR )  | 
						
						
							| 21 | 
							
								
							 | 
							ax-1cn | 
							 |-  1 e. CC  | 
						
						
							| 22 | 
							
								
							 | 
							subcl | 
							 |-  ( ( ( ( log ` ( ! ` ( |_ ` A ) ) ) - ( A x. ( ( log ` A ) - 1 ) ) ) e. CC /\ 1 e. CC ) -> ( ( ( log ` ( ! ` ( |_ ` A ) ) ) - ( A x. ( ( log ` A ) - 1 ) ) ) - 1 ) e. CC )  | 
						
						
							| 23 | 
							
								17 21 22
							 | 
							sylancl | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( ( ( log ` ( ! ` ( |_ ` A ) ) ) - ( A x. ( ( log ` A ) - 1 ) ) ) - 1 ) e. CC )  | 
						
						
							| 24 | 
							
								23
							 | 
							abscld | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( abs ` ( ( ( log ` ( ! ` ( |_ ` A ) ) ) - ( A x. ( ( log ` A ) - 1 ) ) ) - 1 ) ) e. RR )  | 
						
						
							| 25 | 
							
								
							 | 
							abs1 | 
							 |-  ( abs ` 1 ) = 1  | 
						
						
							| 26 | 
							
								25
							 | 
							oveq2i | 
							 |-  ( ( abs ` ( ( log ` ( ! ` ( |_ ` A ) ) ) - ( A x. ( ( log ` A ) - 1 ) ) ) ) - ( abs ` 1 ) ) = ( ( abs ` ( ( log ` ( ! ` ( |_ ` A ) ) ) - ( A x. ( ( log ` A ) - 1 ) ) ) ) - 1 )  | 
						
						
							| 27 | 
							
								
							 | 
							abs2dif | 
							 |-  ( ( ( ( log ` ( ! ` ( |_ ` A ) ) ) - ( A x. ( ( log ` A ) - 1 ) ) ) e. CC /\ 1 e. CC ) -> ( ( abs ` ( ( log ` ( ! ` ( |_ ` A ) ) ) - ( A x. ( ( log ` A ) - 1 ) ) ) ) - ( abs ` 1 ) ) <_ ( abs ` ( ( ( log ` ( ! ` ( |_ ` A ) ) ) - ( A x. ( ( log ` A ) - 1 ) ) ) - 1 ) ) )  | 
						
						
							| 28 | 
							
								17 21 27
							 | 
							sylancl | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( ( abs ` ( ( log ` ( ! ` ( |_ ` A ) ) ) - ( A x. ( ( log ` A ) - 1 ) ) ) ) - ( abs ` 1 ) ) <_ ( abs ` ( ( ( log ` ( ! ` ( |_ ` A ) ) ) - ( A x. ( ( log ` A ) - 1 ) ) ) - 1 ) ) )  | 
						
						
							| 29 | 
							
								26 28
							 | 
							eqbrtrrid | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( ( abs ` ( ( log ` ( ! ` ( |_ ` A ) ) ) - ( A x. ( ( log ` A ) - 1 ) ) ) ) - 1 ) <_ ( abs ` ( ( ( log ` ( ! ` ( |_ ` A ) ) ) - ( A x. ( ( log ` A ) - 1 ) ) ) - 1 ) ) )  | 
						
						
							| 30 | 
							
								
							 | 
							fveq2 | 
							 |-  ( x = A -> ( |_ ` x ) = ( |_ ` A ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							oveq2d | 
							 |-  ( x = A -> ( 1 ... ( |_ ` x ) ) = ( 1 ... ( |_ ` A ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							sumeq1d | 
							 |-  ( x = A -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( log ` n ) = sum_ n e. ( 1 ... ( |_ ` A ) ) ( log ` n ) )  | 
						
						
							| 33 | 
							
								
							 | 
							id | 
							 |-  ( x = A -> x = A )  | 
						
						
							| 34 | 
							
								
							 | 
							fveq2 | 
							 |-  ( x = A -> ( log ` x ) = ( log ` A ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							oveq1d | 
							 |-  ( x = A -> ( ( log ` x ) - 1 ) = ( ( log ` A ) - 1 ) )  | 
						
						
							| 36 | 
							
								33 35
							 | 
							oveq12d | 
							 |-  ( x = A -> ( x x. ( ( log ` x ) - 1 ) ) = ( A x. ( ( log ` A ) - 1 ) ) )  | 
						
						
							| 37 | 
							
								32 36
							 | 
							oveq12d | 
							 |-  ( x = A -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( log ` n ) - ( x x. ( ( log ` x ) - 1 ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( log ` n ) - ( A x. ( ( log ` A ) - 1 ) ) ) )  | 
						
						
							| 38 | 
							
								
							 | 
							eqid | 
							 |-  ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( log ` n ) - ( x x. ( ( log ` x ) - 1 ) ) ) ) = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( log ` n ) - ( x x. ( ( log ` x ) - 1 ) ) ) )  | 
						
						
							| 39 | 
							
								
							 | 
							ovex | 
							 |-  ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( log ` n ) - ( x x. ( ( log ` x ) - 1 ) ) ) e. _V  | 
						
						
							| 40 | 
							
								37 38 39
							 | 
							fvmpt3i | 
							 |-  ( A e. RR+ -> ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( log ` n ) - ( x x. ( ( log ` x ) - 1 ) ) ) ) ` A ) = ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( log ` n ) - ( A x. ( ( log ` A ) - 1 ) ) ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							adantr | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( log ` n ) - ( x x. ( ( log ` x ) - 1 ) ) ) ) ` A ) = ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( log ` n ) - ( A x. ( ( log ` A ) - 1 ) ) ) )  | 
						
						
							| 42 | 
							
								
							 | 
							logfac | 
							 |-  ( ( |_ ` A ) e. NN0 -> ( log ` ( ! ` ( |_ ` A ) ) ) = sum_ n e. ( 1 ... ( |_ ` A ) ) ( log ` n ) )  | 
						
						
							| 43 | 
							
								4 42
							 | 
							syl | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( log ` ( ! ` ( |_ ` A ) ) ) = sum_ n e. ( 1 ... ( |_ ` A ) ) ( log ` n ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							oveq1d | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( ( log ` ( ! ` ( |_ ` A ) ) ) - ( A x. ( ( log ` A ) - 1 ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( log ` n ) - ( A x. ( ( log ` A ) - 1 ) ) ) )  | 
						
						
							| 45 | 
							
								41 44
							 | 
							eqtr4d | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( log ` n ) - ( x x. ( ( log ` x ) - 1 ) ) ) ) ` A ) = ( ( log ` ( ! ` ( |_ ` A ) ) ) - ( A x. ( ( log ` A ) - 1 ) ) ) )  | 
						
						
							| 46 | 
							
								
							 | 
							1rp | 
							 |-  1 e. RR+  | 
						
						
							| 47 | 
							
								
							 | 
							fveq2 | 
							 |-  ( x = 1 -> ( |_ ` x ) = ( |_ ` 1 ) )  | 
						
						
							| 48 | 
							
								
							 | 
							1z | 
							 |-  1 e. ZZ  | 
						
						
							| 49 | 
							
								
							 | 
							flid | 
							 |-  ( 1 e. ZZ -> ( |_ ` 1 ) = 1 )  | 
						
						
							| 50 | 
							
								48 49
							 | 
							ax-mp | 
							 |-  ( |_ ` 1 ) = 1  | 
						
						
							| 51 | 
							
								47 50
							 | 
							eqtrdi | 
							 |-  ( x = 1 -> ( |_ ` x ) = 1 )  | 
						
						
							| 52 | 
							
								51
							 | 
							oveq2d | 
							 |-  ( x = 1 -> ( 1 ... ( |_ ` x ) ) = ( 1 ... 1 ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							sumeq1d | 
							 |-  ( x = 1 -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( log ` n ) = sum_ n e. ( 1 ... 1 ) ( log ` n ) )  | 
						
						
							| 54 | 
							
								
							 | 
							0cn | 
							 |-  0 e. CC  | 
						
						
							| 55 | 
							
								
							 | 
							fveq2 | 
							 |-  ( n = 1 -> ( log ` n ) = ( log ` 1 ) )  | 
						
						
							| 56 | 
							
								
							 | 
							log1 | 
							 |-  ( log ` 1 ) = 0  | 
						
						
							| 57 | 
							
								55 56
							 | 
							eqtrdi | 
							 |-  ( n = 1 -> ( log ` n ) = 0 )  | 
						
						
							| 58 | 
							
								57
							 | 
							fsum1 | 
							 |-  ( ( 1 e. ZZ /\ 0 e. CC ) -> sum_ n e. ( 1 ... 1 ) ( log ` n ) = 0 )  | 
						
						
							| 59 | 
							
								48 54 58
							 | 
							mp2an | 
							 |-  sum_ n e. ( 1 ... 1 ) ( log ` n ) = 0  | 
						
						
							| 60 | 
							
								53 59
							 | 
							eqtrdi | 
							 |-  ( x = 1 -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( log ` n ) = 0 )  | 
						
						
							| 61 | 
							
								
							 | 
							id | 
							 |-  ( x = 1 -> x = 1 )  | 
						
						
							| 62 | 
							
								
							 | 
							fveq2 | 
							 |-  ( x = 1 -> ( log ` x ) = ( log ` 1 ) )  | 
						
						
							| 63 | 
							
								62 56
							 | 
							eqtrdi | 
							 |-  ( x = 1 -> ( log ` x ) = 0 )  | 
						
						
							| 64 | 
							
								63
							 | 
							oveq1d | 
							 |-  ( x = 1 -> ( ( log ` x ) - 1 ) = ( 0 - 1 ) )  | 
						
						
							| 65 | 
							
								61 64
							 | 
							oveq12d | 
							 |-  ( x = 1 -> ( x x. ( ( log ` x ) - 1 ) ) = ( 1 x. ( 0 - 1 ) ) )  | 
						
						
							| 66 | 
							
								54 21
							 | 
							subcli | 
							 |-  ( 0 - 1 ) e. CC  | 
						
						
							| 67 | 
							
								66
							 | 
							mullidi | 
							 |-  ( 1 x. ( 0 - 1 ) ) = ( 0 - 1 )  | 
						
						
							| 68 | 
							
								65 67
							 | 
							eqtrdi | 
							 |-  ( x = 1 -> ( x x. ( ( log ` x ) - 1 ) ) = ( 0 - 1 ) )  | 
						
						
							| 69 | 
							
								60 68
							 | 
							oveq12d | 
							 |-  ( x = 1 -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( log ` n ) - ( x x. ( ( log ` x ) - 1 ) ) ) = ( 0 - ( 0 - 1 ) ) )  | 
						
						
							| 70 | 
							
								
							 | 
							nncan | 
							 |-  ( ( 0 e. CC /\ 1 e. CC ) -> ( 0 - ( 0 - 1 ) ) = 1 )  | 
						
						
							| 71 | 
							
								54 21 70
							 | 
							mp2an | 
							 |-  ( 0 - ( 0 - 1 ) ) = 1  | 
						
						
							| 72 | 
							
								69 71
							 | 
							eqtrdi | 
							 |-  ( x = 1 -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( log ` n ) - ( x x. ( ( log ` x ) - 1 ) ) ) = 1 )  | 
						
						
							| 73 | 
							
								72 38 39
							 | 
							fvmpt3i | 
							 |-  ( 1 e. RR+ -> ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( log ` n ) - ( x x. ( ( log ` x ) - 1 ) ) ) ) ` 1 ) = 1 )  | 
						
						
							| 74 | 
							
								46 73
							 | 
							mp1i | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( log ` n ) - ( x x. ( ( log ` x ) - 1 ) ) ) ) ` 1 ) = 1 )  | 
						
						
							| 75 | 
							
								45 74
							 | 
							oveq12d | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( log ` n ) - ( x x. ( ( log ` x ) - 1 ) ) ) ) ` A ) - ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( log ` n ) - ( x x. ( ( log ` x ) - 1 ) ) ) ) ` 1 ) ) = ( ( ( log ` ( ! ` ( |_ ` A ) ) ) - ( A x. ( ( log ` A ) - 1 ) ) ) - 1 ) )  | 
						
						
							| 76 | 
							
								75
							 | 
							fveq2d | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( abs ` ( ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( log ` n ) - ( x x. ( ( log ` x ) - 1 ) ) ) ) ` A ) - ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( log ` n ) - ( x x. ( ( log ` x ) - 1 ) ) ) ) ` 1 ) ) ) = ( abs ` ( ( ( log ` ( ! ` ( |_ ` A ) ) ) - ( A x. ( ( log ` A ) - 1 ) ) ) - 1 ) ) )  | 
						
						
							| 77 | 
							
								
							 | 
							ioorp | 
							 |-  ( 0 (,) +oo ) = RR+  | 
						
						
							| 78 | 
							
								77
							 | 
							eqcomi | 
							 |-  RR+ = ( 0 (,) +oo )  | 
						
						
							| 79 | 
							
								
							 | 
							nnuz | 
							 |-  NN = ( ZZ>= ` 1 )  | 
						
						
							| 80 | 
							
								48
							 | 
							a1i | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> 1 e. ZZ )  | 
						
						
							| 81 | 
							
								
							 | 
							1re | 
							 |-  1 e. RR  | 
						
						
							| 82 | 
							
								81
							 | 
							a1i | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> 1 e. RR )  | 
						
						
							| 83 | 
							
								
							 | 
							pnfxr | 
							 |-  +oo e. RR*  | 
						
						
							| 84 | 
							
								83
							 | 
							a1i | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> +oo e. RR* )  | 
						
						
							| 85 | 
							
								
							 | 
							1nn0 | 
							 |-  1 e. NN0  | 
						
						
							| 86 | 
							
								81 85
							 | 
							nn0addge1i | 
							 |-  1 <_ ( 1 + 1 )  | 
						
						
							| 87 | 
							
								86
							 | 
							a1i | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> 1 <_ ( 1 + 1 ) )  | 
						
						
							| 88 | 
							
								
							 | 
							0red | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> 0 e. RR )  | 
						
						
							| 89 | 
							
								
							 | 
							rpre | 
							 |-  ( x e. RR+ -> x e. RR )  | 
						
						
							| 90 | 
							
								89
							 | 
							adantl | 
							 |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> x e. RR )  | 
						
						
							| 91 | 
							
								
							 | 
							relogcl | 
							 |-  ( x e. RR+ -> ( log ` x ) e. RR )  | 
						
						
							| 92 | 
							
								91
							 | 
							adantl | 
							 |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> ( log ` x ) e. RR )  | 
						
						
							| 93 | 
							
								
							 | 
							peano2rem | 
							 |-  ( ( log ` x ) e. RR -> ( ( log ` x ) - 1 ) e. RR )  | 
						
						
							| 94 | 
							
								92 93
							 | 
							syl | 
							 |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> ( ( log ` x ) - 1 ) e. RR )  | 
						
						
							| 95 | 
							
								90 94
							 | 
							remulcld | 
							 |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. RR+ ) -> ( x x. ( ( log ` x ) - 1 ) ) e. RR )  | 
						
						
							| 96 | 
							
								
							 | 
							nnrp | 
							 |-  ( x e. NN -> x e. RR+ )  | 
						
						
							| 97 | 
							
								96 92
							 | 
							sylan2 | 
							 |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ x e. NN ) -> ( log ` x ) e. RR )  | 
						
						
							| 98 | 
							
								
							 | 
							advlog | 
							 |-  ( RR _D ( x e. RR+ |-> ( x x. ( ( log ` x ) - 1 ) ) ) ) = ( x e. RR+ |-> ( log ` x ) )  | 
						
						
							| 99 | 
							
								98
							 | 
							a1i | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( RR _D ( x e. RR+ |-> ( x x. ( ( log ` x ) - 1 ) ) ) ) = ( x e. RR+ |-> ( log ` x ) ) )  | 
						
						
							| 100 | 
							
								
							 | 
							fveq2 | 
							 |-  ( x = n -> ( log ` x ) = ( log ` n ) )  | 
						
						
							| 101 | 
							
								
							 | 
							simp32 | 
							 |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ ( x e. RR+ /\ n e. RR+ ) /\ ( 1 <_ x /\ x <_ n /\ n <_ +oo ) ) -> x <_ n )  | 
						
						
							| 102 | 
							
								
							 | 
							logleb | 
							 |-  ( ( x e. RR+ /\ n e. RR+ ) -> ( x <_ n <-> ( log ` x ) <_ ( log ` n ) ) )  | 
						
						
							| 103 | 
							
								102
							 | 
							3ad2ant2 | 
							 |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ ( x e. RR+ /\ n e. RR+ ) /\ ( 1 <_ x /\ x <_ n /\ n <_ +oo ) ) -> ( x <_ n <-> ( log ` x ) <_ ( log ` n ) ) )  | 
						
						
							| 104 | 
							
								101 103
							 | 
							mpbid | 
							 |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ ( x e. RR+ /\ n e. RR+ ) /\ ( 1 <_ x /\ x <_ n /\ n <_ +oo ) ) -> ( log ` x ) <_ ( log ` n ) )  | 
						
						
							| 105 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> 1 <_ x )  | 
						
						
							| 106 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> x e. RR+ )  | 
						
						
							| 107 | 
							
								
							 | 
							logleb | 
							 |-  ( ( 1 e. RR+ /\ x e. RR+ ) -> ( 1 <_ x <-> ( log ` 1 ) <_ ( log ` x ) ) )  | 
						
						
							| 108 | 
							
								46 106 107
							 | 
							sylancr | 
							 |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( 1 <_ x <-> ( log ` 1 ) <_ ( log ` x ) ) )  | 
						
						
							| 109 | 
							
								105 108
							 | 
							mpbid | 
							 |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( log ` 1 ) <_ ( log ` x ) )  | 
						
						
							| 110 | 
							
								56 109
							 | 
							eqbrtrrid | 
							 |-  ( ( ( A e. RR+ /\ 1 <_ A ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> 0 <_ ( log ` x ) )  | 
						
						
							| 111 | 
							
								46
							 | 
							a1i | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> 1 e. RR+ )  | 
						
						
							| 112 | 
							
								
							 | 
							1le1 | 
							 |-  1 <_ 1  | 
						
						
							| 113 | 
							
								112
							 | 
							a1i | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> 1 <_ 1 )  | 
						
						
							| 114 | 
							
								
							 | 
							simpr | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> 1 <_ A )  | 
						
						
							| 115 | 
							
								10
							 | 
							rexrd | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> A e. RR* )  | 
						
						
							| 116 | 
							
								
							 | 
							pnfge | 
							 |-  ( A e. RR* -> A <_ +oo )  | 
						
						
							| 117 | 
							
								115 116
							 | 
							syl | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> A <_ +oo )  | 
						
						
							| 118 | 
							
								78 79 80 82 84 87 88 95 92 97 99 100 104 38 110 111 1 113 114 117 34
							 | 
							dvfsum2 | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( abs ` ( ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( log ` n ) - ( x x. ( ( log ` x ) - 1 ) ) ) ) ` A ) - ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( log ` n ) - ( x x. ( ( log ` x ) - 1 ) ) ) ) ` 1 ) ) ) <_ ( log ` A ) )  | 
						
						
							| 119 | 
							
								76 118
							 | 
							eqbrtrrd | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( abs ` ( ( ( log ` ( ! ` ( |_ ` A ) ) ) - ( A x. ( ( log ` A ) - 1 ) ) ) - 1 ) ) <_ ( log ` A ) )  | 
						
						
							| 120 | 
							
								20 24 12 29 119
							 | 
							letrd | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( ( abs ` ( ( log ` ( ! ` ( |_ ` A ) ) ) - ( A x. ( ( log ` A ) - 1 ) ) ) ) - 1 ) <_ ( log ` A ) )  | 
						
						
							| 121 | 
							
								18 82 12
							 | 
							lesubaddd | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( ( ( abs ` ( ( log ` ( ! ` ( |_ ` A ) ) ) - ( A x. ( ( log ` A ) - 1 ) ) ) ) - 1 ) <_ ( log ` A ) <-> ( abs ` ( ( log ` ( ! ` ( |_ ` A ) ) ) - ( A x. ( ( log ` A ) - 1 ) ) ) ) <_ ( ( log ` A ) + 1 ) ) )  | 
						
						
							| 122 | 
							
								120 121
							 | 
							mpbid | 
							 |-  ( ( A e. RR+ /\ 1 <_ A ) -> ( abs ` ( ( log ` ( ! ` ( |_ ` A ) ) ) - ( A x. ( ( log ` A ) - 1 ) ) ) ) <_ ( ( log ` A ) + 1 ) )  |