Step |
Hyp |
Ref |
Expression |
1 |
|
1nn0 |
|- 1 e. NN0 |
2 |
|
logexprlim |
|- ( 1 e. NN0 -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 1 ) / x ) ) ~~>r ( ! ` 1 ) ) |
3 |
1 2
|
ax-mp |
|- ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 1 ) / x ) ) ~~>r ( ! ` 1 ) |
4 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) |
5 |
4
|
nnrpd |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. RR+ ) |
6 |
|
rpdivcl |
|- ( ( x e. RR+ /\ n e. RR+ ) -> ( x / n ) e. RR+ ) |
7 |
5 6
|
sylan2 |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR+ ) |
8 |
7
|
relogcld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` ( x / n ) ) e. RR ) |
9 |
8
|
recnd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` ( x / n ) ) e. CC ) |
10 |
9
|
exp1d |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( log ` ( x / n ) ) ^ 1 ) = ( log ` ( x / n ) ) ) |
11 |
10
|
sumeq2dv |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 1 ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( log ` ( x / n ) ) ) |
12 |
11
|
oveq1d |
|- ( x e. RR+ -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 1 ) / x ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( log ` ( x / n ) ) / x ) ) |
13 |
|
fzfid |
|- ( x e. RR+ -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
14 |
|
rpcn |
|- ( x e. RR+ -> x e. CC ) |
15 |
|
rpne0 |
|- ( x e. RR+ -> x =/= 0 ) |
16 |
13 14 9 15
|
fsumdivc |
|- ( x e. RR+ -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( log ` ( x / n ) ) / x ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) / x ) ) |
17 |
12 16
|
eqtrd |
|- ( x e. RR+ -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 1 ) / x ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) / x ) ) |
18 |
17
|
mpteq2ia |
|- ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) ^ 1 ) / x ) ) = ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) / x ) ) |
19 |
|
fac1 |
|- ( ! ` 1 ) = 1 |
20 |
3 18 19
|
3brtr3i |
|- ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / n ) ) / x ) ) ~~>r 1 |