Metamath Proof Explorer


Theorem logge0b

Description: The logarithm of a number is nonnegative iff the number is greater than or equal to 1. (Contributed by AV, 30-May-2020)

Ref Expression
Assertion logge0b
|- ( A e. RR+ -> ( 0 <_ ( log ` A ) <-> 1 <_ A ) )

Proof

Step Hyp Ref Expression
1 1rp
 |-  1 e. RR+
2 1 a1i
 |-  ( A e. RR+ -> 1 e. RR+ )
3 id
 |-  ( A e. RR+ -> A e. RR+ )
4 2 3 logled
 |-  ( A e. RR+ -> ( 1 <_ A <-> ( log ` 1 ) <_ ( log ` A ) ) )
5 log1
 |-  ( log ` 1 ) = 0
6 5 a1i
 |-  ( A e. RR+ -> ( log ` 1 ) = 0 )
7 6 breq1d
 |-  ( A e. RR+ -> ( ( log ` 1 ) <_ ( log ` A ) <-> 0 <_ ( log ` A ) ) )
8 4 7 bitr2d
 |-  ( A e. RR+ -> ( 0 <_ ( log ` A ) <-> 1 <_ A ) )