Description: The imaginary part of the logarithm is in ( -upi (,] pi ) . Deduction form of logimcl . Compare logimclad . (Contributed by David Moews, 28-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | logimcld.1 | |- ( ph -> X e. CC ) | |
| logimcld.2 | |- ( ph -> X =/= 0 ) | ||
| Assertion | logimcld | |- ( ph -> ( -u _pi < ( Im ` ( log ` X ) ) /\ ( Im ` ( log ` X ) ) <_ _pi ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | logimcld.1 | |- ( ph -> X e. CC ) | |
| 2 | logimcld.2 | |- ( ph -> X =/= 0 ) | |
| 3 | logimcl | |- ( ( X e. CC /\ X =/= 0 ) -> ( -u _pi < ( Im ` ( log ` X ) ) /\ ( Im ` ( log ` X ) ) <_ _pi ) ) | |
| 4 | 1 2 3 | syl2anc | |- ( ph -> ( -u _pi < ( Im ` ( log ` X ) ) /\ ( Im ` ( log ` X ) ) <_ _pi ) ) |