Metamath Proof Explorer


Theorem logimcld

Description: The imaginary part of the logarithm is in ( -upi (,] pi ) . Deduction form of logimcl . Compare logimclad . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses logimcld.1
|- ( ph -> X e. CC )
logimcld.2
|- ( ph -> X =/= 0 )
Assertion logimcld
|- ( ph -> ( -u _pi < ( Im ` ( log ` X ) ) /\ ( Im ` ( log ` X ) ) <_ _pi ) )

Proof

Step Hyp Ref Expression
1 logimcld.1
 |-  ( ph -> X e. CC )
2 logimcld.2
 |-  ( ph -> X =/= 0 )
3 logimcl
 |-  ( ( X e. CC /\ X =/= 0 ) -> ( -u _pi < ( Im ` ( log ` X ) ) /\ ( Im ` ( log ` X ) ) <_ _pi ) )
4 1 2 3 syl2anc
 |-  ( ph -> ( -u _pi < ( Im ` ( log ` X ) ) /\ ( Im ` ( log ` X ) ) <_ _pi ) )