Description: The imaginary part of the logarithm is in ( -upi (,] pi ) . Deduction form of logimcl . Compare logimclad . (Contributed by David Moews, 28-Feb-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | logimcld.1 | |- ( ph -> X e. CC ) |
|
logimcld.2 | |- ( ph -> X =/= 0 ) |
||
Assertion | logimcld | |- ( ph -> ( -u _pi < ( Im ` ( log ` X ) ) /\ ( Im ` ( log ` X ) ) <_ _pi ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | logimcld.1 | |- ( ph -> X e. CC ) |
|
2 | logimcld.2 | |- ( ph -> X =/= 0 ) |
|
3 | logimcl | |- ( ( X e. CC /\ X =/= 0 ) -> ( -u _pi < ( Im ` ( log ` X ) ) /\ ( Im ` ( log ` X ) ) <_ _pi ) ) |
|
4 | 1 2 3 | syl2anc | |- ( ph -> ( -u _pi < ( Im ` ( log ` X ) ) /\ ( Im ` ( log ` X ) ) <_ _pi ) ) |