Metamath Proof Explorer


Theorem logle1b

Description: The logarithm of a number is less than or equal to 1 iff the number is less than or equal to Euler's constant. (Contributed by AV, 30-May-2020)

Ref Expression
Assertion logle1b
|- ( A e. RR+ -> ( ( log ` A ) <_ 1 <-> A <_ _e ) )

Proof

Step Hyp Ref Expression
1 id
 |-  ( A e. RR+ -> A e. RR+ )
2 epr
 |-  _e e. RR+
3 2 a1i
 |-  ( A e. RR+ -> _e e. RR+ )
4 1 3 logled
 |-  ( A e. RR+ -> ( A <_ _e <-> ( log ` A ) <_ ( log ` _e ) ) )
5 loge
 |-  ( log ` _e ) = 1
6 5 a1i
 |-  ( A e. RR+ -> ( log ` _e ) = 1 )
7 6 breq2d
 |-  ( A e. RR+ -> ( ( log ` A ) <_ ( log ` _e ) <-> ( log ` A ) <_ 1 ) )
8 4 7 bitr2d
 |-  ( A e. RR+ -> ( ( log ` A ) <_ 1 <-> A <_ _e ) )