Step |
Hyp |
Ref |
Expression |
1 |
|
logltb |
|- ( ( B e. RR+ /\ A e. RR+ ) -> ( B < A <-> ( log ` B ) < ( log ` A ) ) ) |
2 |
1
|
ancoms |
|- ( ( A e. RR+ /\ B e. RR+ ) -> ( B < A <-> ( log ` B ) < ( log ` A ) ) ) |
3 |
2
|
notbid |
|- ( ( A e. RR+ /\ B e. RR+ ) -> ( -. B < A <-> -. ( log ` B ) < ( log ` A ) ) ) |
4 |
|
rpre |
|- ( A e. RR+ -> A e. RR ) |
5 |
|
rpre |
|- ( B e. RR+ -> B e. RR ) |
6 |
|
lenlt |
|- ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> -. B < A ) ) |
7 |
4 5 6
|
syl2an |
|- ( ( A e. RR+ /\ B e. RR+ ) -> ( A <_ B <-> -. B < A ) ) |
8 |
|
relogcl |
|- ( A e. RR+ -> ( log ` A ) e. RR ) |
9 |
|
relogcl |
|- ( B e. RR+ -> ( log ` B ) e. RR ) |
10 |
|
lenlt |
|- ( ( ( log ` A ) e. RR /\ ( log ` B ) e. RR ) -> ( ( log ` A ) <_ ( log ` B ) <-> -. ( log ` B ) < ( log ` A ) ) ) |
11 |
8 9 10
|
syl2an |
|- ( ( A e. RR+ /\ B e. RR+ ) -> ( ( log ` A ) <_ ( log ` B ) <-> -. ( log ` B ) < ( log ` A ) ) ) |
12 |
3 7 11
|
3bitr4d |
|- ( ( A e. RR+ /\ B e. RR+ ) -> ( A <_ B <-> ( log ` A ) <_ ( log ` B ) ) ) |