Metamath Proof Explorer


Theorem logled

Description: Natural logarithm preserves <_ . (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses relogcld.1
|- ( ph -> A e. RR+ )
relogmuld.2
|- ( ph -> B e. RR+ )
Assertion logled
|- ( ph -> ( A <_ B <-> ( log ` A ) <_ ( log ` B ) ) )

Proof

Step Hyp Ref Expression
1 relogcld.1
 |-  ( ph -> A e. RR+ )
2 relogmuld.2
 |-  ( ph -> B e. RR+ )
3 logleb
 |-  ( ( A e. RR+ /\ B e. RR+ ) -> ( A <_ B <-> ( log ` A ) <_ ( log ` B ) ) )
4 1 2 3 syl2anc
 |-  ( ph -> ( A <_ B <-> ( log ` A ) <_ ( log ` B ) ) )