Description: Natural logarithm preserves <_ . (Contributed by Mario Carneiro, 29-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | relogcld.1 | |- ( ph -> A e. RR+ ) |
|
relogmuld.2 | |- ( ph -> B e. RR+ ) |
||
Assertion | logled | |- ( ph -> ( A <_ B <-> ( log ` A ) <_ ( log ` B ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relogcld.1 | |- ( ph -> A e. RR+ ) |
|
2 | relogmuld.2 | |- ( ph -> B e. RR+ ) |
|
3 | logleb | |- ( ( A e. RR+ /\ B e. RR+ ) -> ( A <_ B <-> ( log ` A ) <_ ( log ` B ) ) ) |
|
4 | 1 2 3 | syl2anc | |- ( ph -> ( A <_ B <-> ( log ` A ) <_ ( log ` B ) ) ) |