Description: Natural logarithm preserves <_ . (Contributed by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | relogcld.1 | |- ( ph -> A e. RR+ ) |
|
| relogmuld.2 | |- ( ph -> B e. RR+ ) |
||
| Assertion | logled | |- ( ph -> ( A <_ B <-> ( log ` A ) <_ ( log ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relogcld.1 | |- ( ph -> A e. RR+ ) |
|
| 2 | relogmuld.2 | |- ( ph -> B e. RR+ ) |
|
| 3 | logleb | |- ( ( A e. RR+ /\ B e. RR+ ) -> ( A <_ B <-> ( log ` A ) <_ ( log ` B ) ) ) |
|
| 4 | 1 2 3 | syl2anc | |- ( ph -> ( A <_ B <-> ( log ` A ) <_ ( log ` B ) ) ) |