| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relogiso |
|- ( log |` RR+ ) Isom < , < ( RR+ , RR ) |
| 2 |
|
df-isom |
|- ( ( log |` RR+ ) Isom < , < ( RR+ , RR ) <-> ( ( log |` RR+ ) : RR+ -1-1-onto-> RR /\ A. x e. RR+ A. y e. RR+ ( x < y <-> ( ( log |` RR+ ) ` x ) < ( ( log |` RR+ ) ` y ) ) ) ) |
| 3 |
1 2
|
mpbi |
|- ( ( log |` RR+ ) : RR+ -1-1-onto-> RR /\ A. x e. RR+ A. y e. RR+ ( x < y <-> ( ( log |` RR+ ) ` x ) < ( ( log |` RR+ ) ` y ) ) ) |
| 4 |
3
|
simpri |
|- A. x e. RR+ A. y e. RR+ ( x < y <-> ( ( log |` RR+ ) ` x ) < ( ( log |` RR+ ) ` y ) ) |
| 5 |
|
breq1 |
|- ( x = A -> ( x < y <-> A < y ) ) |
| 6 |
|
fveq2 |
|- ( x = A -> ( ( log |` RR+ ) ` x ) = ( ( log |` RR+ ) ` A ) ) |
| 7 |
6
|
breq1d |
|- ( x = A -> ( ( ( log |` RR+ ) ` x ) < ( ( log |` RR+ ) ` y ) <-> ( ( log |` RR+ ) ` A ) < ( ( log |` RR+ ) ` y ) ) ) |
| 8 |
5 7
|
bibi12d |
|- ( x = A -> ( ( x < y <-> ( ( log |` RR+ ) ` x ) < ( ( log |` RR+ ) ` y ) ) <-> ( A < y <-> ( ( log |` RR+ ) ` A ) < ( ( log |` RR+ ) ` y ) ) ) ) |
| 9 |
|
breq2 |
|- ( y = B -> ( A < y <-> A < B ) ) |
| 10 |
|
fveq2 |
|- ( y = B -> ( ( log |` RR+ ) ` y ) = ( ( log |` RR+ ) ` B ) ) |
| 11 |
10
|
breq2d |
|- ( y = B -> ( ( ( log |` RR+ ) ` A ) < ( ( log |` RR+ ) ` y ) <-> ( ( log |` RR+ ) ` A ) < ( ( log |` RR+ ) ` B ) ) ) |
| 12 |
9 11
|
bibi12d |
|- ( y = B -> ( ( A < y <-> ( ( log |` RR+ ) ` A ) < ( ( log |` RR+ ) ` y ) ) <-> ( A < B <-> ( ( log |` RR+ ) ` A ) < ( ( log |` RR+ ) ` B ) ) ) ) |
| 13 |
8 12
|
rspc2v |
|- ( ( A e. RR+ /\ B e. RR+ ) -> ( A. x e. RR+ A. y e. RR+ ( x < y <-> ( ( log |` RR+ ) ` x ) < ( ( log |` RR+ ) ` y ) ) -> ( A < B <-> ( ( log |` RR+ ) ` A ) < ( ( log |` RR+ ) ` B ) ) ) ) |
| 14 |
4 13
|
mpi |
|- ( ( A e. RR+ /\ B e. RR+ ) -> ( A < B <-> ( ( log |` RR+ ) ` A ) < ( ( log |` RR+ ) ` B ) ) ) |
| 15 |
|
fvres |
|- ( A e. RR+ -> ( ( log |` RR+ ) ` A ) = ( log ` A ) ) |
| 16 |
|
fvres |
|- ( B e. RR+ -> ( ( log |` RR+ ) ` B ) = ( log ` B ) ) |
| 17 |
15 16
|
breqan12d |
|- ( ( A e. RR+ /\ B e. RR+ ) -> ( ( ( log |` RR+ ) ` A ) < ( ( log |` RR+ ) ` B ) <-> ( log ` A ) < ( log ` B ) ) ) |
| 18 |
14 17
|
bitrd |
|- ( ( A e. RR+ /\ B e. RR+ ) -> ( A < B <-> ( log ` A ) < ( log ` B ) ) ) |