Description: The natural logarithm of negative 1 . (Contributed by Paul Chapman, 21-Apr-2008) (Revised by Mario Carneiro, 13-May-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | logm1 | |- ( log ` -u 1 ) = ( _i x. _pi ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1rp | |- 1 e. RR+ |
|
2 | logneg | |- ( 1 e. RR+ -> ( log ` -u 1 ) = ( ( log ` 1 ) + ( _i x. _pi ) ) ) |
|
3 | 1 2 | ax-mp | |- ( log ` -u 1 ) = ( ( log ` 1 ) + ( _i x. _pi ) ) |
4 | log1 | |- ( log ` 1 ) = 0 |
|
5 | 4 | oveq1i | |- ( ( log ` 1 ) + ( _i x. _pi ) ) = ( 0 + ( _i x. _pi ) ) |
6 | ax-icn | |- _i e. CC |
|
7 | picn | |- _pi e. CC |
|
8 | 6 7 | mulcli | |- ( _i x. _pi ) e. CC |
9 | 8 | addid2i | |- ( 0 + ( _i x. _pi ) ) = ( _i x. _pi ) |
10 | 3 5 9 | 3eqtri | |- ( log ` -u 1 ) = ( _i x. _pi ) |